Initial Push
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-PandaSlide-v3.zip +3 -0
- ppo-PandaSlide-v3/_stable_baselines3_version +1 -0
- ppo-PandaSlide-v3/data +127 -0
- ppo-PandaSlide-v3/policy.optimizer.pth +3 -0
- ppo-PandaSlide-v3/policy.pth +3 -0
- ppo-PandaSlide-v3/pytorch_variables.pth +3 -0
- ppo-PandaSlide-v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaSlide-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaSlide-v3
|
16 |
+
type: PandaSlide-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -40.40 +/- 14.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **PandaSlide-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **PandaSlide-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc88217d2d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc8821775c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoTQACTQACTQACZYwCdmaUXZQoTQACTQACTQACZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUdS4=", "net_arch": {"pi": [512, 512, 512], "vf": [512, 512, 512]}, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>"}, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718108038164682248, "learning_rate": 0.00015, "tensorboard_log": "./ppoPandaSlide-v3/", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAZcUsvt3/qj4bQxM/zB1pvsqnV74FQxM/b4N2vpsuXz71QhM/PcLPviM4wD5PsSo//aLVPWXXRb4GQxM/tzyZvu2Toz7F7xM/3kWxvlj2nj4ePRM/rhixPUWg/LwDQxM/Jd2kPvBaAL7jVBI/waSFPyBEM75rfxI/cjP4PRYbzL0P3xU/0IH3Pvn/vLyaqBI/EZwovst5Br4PQxM/xO/iP9dt/L2Vg8S/8j2bvqksUL7/QhM/v/5RvQMqV77RQhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAvbO2v+W7lb88Pbsxhwy2vSzArr48PbsxWUhEP+yzk788Pbsx/UWDP+7gcT88PbsxKVwsv1tanL48PbsxnMRLvxV9ZD48Pbsx1kEOPgK6rL88Pbsx5pSEvhyuhT88PbsxUq70PT4t3L88PbsxFx+oPMKUfL88PbsxqewfvzPAsb88PbsxFtmyPyScbr88PbsxrReoPVqEBr88PbsxLqGNPnV+jL88PbsxJTKhPy322j88Pbsx7i3Fv0TMpL08PbsxlGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAQAAAAAAABvyts8JObEPnoPOL84UNI+H7t5PwI9xj1lxSy+3f+qPhtDEz8QAUs7yu8GvXSCoDzMSYG+gNAPPtcyiz6FJ1G8OFUxvWQEMjx/pz/APYgUvtbxOkDEhMu+e3BvP2RvcT/MHWm+yqdXvgVDEz8Bc087n4QHvQItrTxYR4G+rNEPPtcyiz4OKFG8K1UxvZYDNzzBH5k+LkYbPT+b4L3VYyO9CTyPP8yLCcBvg3a+my5fPvVCEz9T0Uo7wxkIvS3Bqjw8QIG+cLgPPkg2iz7C4US8LZovvTSsNDyxOy0/LDojPdBSjj85Vrs+n8Wdu0UooT09ws++IzjAPk+xKj8anlA7zmkHvVjXpjw8R4G+hdUPPtcyiz4NKFG8KlUxvRGsNDzCVCQ/jhEEvxlcNL+0Fhk/tEaAPrCxlT39otU9ZddFvgZDEz+sv1A7S4EHvShbrjxNRoG+LtYPPiA0iz5db1G8HRoxvRGsNDwJgYy9YQk1Po7Y174bwxbAbgo/v+ylwT63PJm+7ZOjPsXvEz8eZaO8Ma/UPbu1UT6tQ7g+mo9vPOwpjz6DpJ2/HYQ/v0Q2Vz8+1NE+LvKovnrOJz8VBPA94JZ3P/vruL7eRbG+WPaePh49Ez/DbT071lwgvW//ozwaR4C+kcgPPnr7iz72eEy8UDbkvCmBMzydSkU/ybULPZIlMb+DKFw+PJ9Bv7Gk5D2uGLE9RaD8vANDEz9vgVE7tXIHvaEppDzeRoG+99kPPnc0iz4aCFO8zD0xvU2sNDzWyJA+DqUWPWv0AL+rtGTACEbwvFRPu78l3aQ+8FoAvuNUEj8zzzc6nFYtvVI1Hb2gTbA//S8CPoBoiz73D489ZwLevuwLdr2j1I0/8C/HvrYKLL8N1Nk+RZ+AvivJ3D3BpIU/IEQzvmt/Ej8RHje7VrRovKCYQL8VgRw/RDUuPg6Diz6kZBS/IBgnPpSRh74hO04/YS2YvlPpEr8Topg/GluqPckLmD9yM/g9FhvMvQ/fFT9hVdU8WghOPuv2jTuXH3U/+sU9PlKWIz6wT9a6XtH4vhoWqb4H6DM/A2myvuL0M7/A+vc+1gfCvSw/gz3Qgfc++f+8vJqoEj/9pGU8mGtcvaC9+j5jzFw/TxJqvpsiij4Fb4U+3ucmPyZbWz9iM5k+a4zOvvyNL79Ls5G+1pyfPRC5dz0RnCi+y3kGvg9DEz+UnVA7w2kHvRCBqzw9R4G+gtUPPtgyiz7vJlG8RVUxvRGsNDwZf2m/QOUDQD6ijj6f+rG/jHUWQPHViz/E7+I/1238vZWDxL/633c/iym3v44kIUC4YP8/lNH8vmwfucDyozW+WHcVP6dSDkBLwey/NGGQvz2S0T/g9k2/PrH6PohkcD/yPZu+qSxQvv9CEz+sc1E7rDIHvYWsqTxCSYG+F88PPtcyiz4MKFG8KlUxvYxcMjxZlDG/94QDwKWlAb/nEcS/zVqKv1j1qj6//lG9AypXvtFCEz9nbk07TjkHvbjhqjwyTYG+E9MPPtcyiz42KFG8KFUxvfXwNDyUaA5LEEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.16872175 0.33398333 0.5752427 ]\n [-0.22765273 -0.210601 0.5752414 ]\n [-0.24073575 0.21795122 0.57524043]\n [-0.4057788 0.3754283 0.666768 ]\n [ 0.10431478 -0.19320448 0.57524145]\n [-0.29929134 0.31948796 0.57787734]\n [-0.34623617 0.3104732 0.5751513 ]\n [ 0.08647285 -0.03083814 0.57524127]\n [ 0.3219997 -0.1253469 0.57160777]\n [ 1.0440904 -0.17506456 0.57225674]\n [ 0.12119187 -0.09966104 0.58543485]\n [ 0.48341227 -0.02307128 0.57288516]\n [-0.16465785 -0.13132398 0.575242 ]\n [ 1.7729421 -0.12325638 -1.5352656 ]\n [-0.30320698 -0.20329536 0.575241 ]\n [-0.05126834 -0.2101212 0.5752383 ]]", "desired_goal": "[[-1.42736018e+00 -1.16979659e+00 5.44937784e-09]\n [-8.88910815e-02 -3.41309905e-01 5.44937784e-09]\n [ 7.66728938e-01 -1.15392828e+00 5.44937784e-09]\n [ 1.02557337e+00 9.44838405e-01 5.44937784e-09]\n [-6.73281252e-01 -3.05376858e-01 5.44937784e-09]\n [-7.95968771e-01 2.23133400e-01 5.44937784e-09]\n [ 1.38923019e-01 -1.34942651e+00 5.44937784e-09]\n [-2.58948505e-01 1.04437590e+00 5.44937784e-09]\n [ 1.19473115e-01 -1.72013068e+00 5.44937784e-09]\n [ 2.05226373e-02 -9.86644864e-01 5.44937784e-09]\n [-6.24704897e-01 -1.38867795e+00 5.44937784e-09]\n [ 1.39724994e+00 -9.32070017e-01 5.44937784e-09]\n [ 8.20764080e-02 -5.25457025e-01 5.44937784e-09]\n [ 2.76620328e-01 -1.09760916e+00 5.44937784e-09]\n [ 1.25934279e+00 1.71063769e+00 5.44937784e-09]\n [-1.54046416e+00 -8.04677308e-02 5.44937784e-09]]", "observation": "[[ 2.68299263e-02 3.84568334e-01 -7.18986154e-01 4.10768270e-01\n 9.75511491e-01 9.67960507e-02 -1.68721750e-01 3.33983332e-01\n 5.75242698e-01 3.09759751e-03 -3.29435244e-02 1.95934549e-02\n -2.52516150e-01 1.40443802e-01 2.71872252e-01 -1.27657698e-02\n -4.32941616e-02 1.08653046e-02]\n [-2.99459815e+00 -1.45050958e-01 2.92101049e+00 -3.97497296e-01\n 9.35310066e-01 9.43105936e-01 -2.27652729e-01 -2.10601002e-01\n 5.75241387e-01 3.16542410e-03 -3.30854617e-02 2.11396255e-02\n -2.52497435e-01 1.40448272e-01 2.71872252e-01 -1.27658974e-02\n -4.32941131e-02 1.11702885e-02]\n [ 2.99070388e-01 3.79087254e-02 -1.09671108e-01 -3.98901291e-02\n 1.11901963e+00 -2.14915752e+00 -2.40735754e-01 2.17951223e-01\n 5.75240433e-01 3.09475209e-03 -3.32276933e-02 2.08440665e-02\n -2.52443194e-01 1.40352011e-01 2.71898508e-01 -1.20167155e-02\n -4.28716429e-02 1.10273845e-02]\n [ 6.76692069e-01 3.98503989e-02 1.11190224e+00 3.65892202e-01\n -4.81481804e-03 7.86900893e-02 -4.05778795e-01 3.75428289e-01\n 6.66768014e-01 3.18325171e-03 -3.30598876e-02 2.03663558e-02\n -2.52496600e-01 1.40462950e-01 2.71872252e-01 -1.27658965e-02\n -4.32941094e-02 1.10273520e-02]\n [ 6.41918302e-01 -5.15892863e-01 -7.04530299e-01 5.98002672e-01\n 2.50539422e-01 7.30928183e-02 1.04314782e-01 -1.93204477e-01\n 5.75241446e-01 3.18525266e-03 -3.30822878e-02 2.12837011e-02\n -2.52489477e-01 1.40465468e-01 2.71882057e-01 -1.27828987e-02\n -4.32377942e-02 1.10273520e-02]\n [-6.86054900e-02 1.76793590e-01 -4.21574056e-01 -2.35565829e+00\n -7.46252894e-01 3.78219008e-01 -2.99291342e-01 3.19487959e-01\n 5.77877343e-01 -1.99456774e-02 1.03849776e-01 2.04794809e-01\n 3.59891325e-01 1.46216396e-02 2.79616714e-01 -1.23158300e+00\n -7.48109639e-01 8.40671778e-01]\n [ 4.09822404e-01 -3.29972684e-01 6.55494332e-01 1.17195286e-01\n 9.67145920e-01 -3.61175388e-01 -3.46236169e-01 3.10473204e-01\n 5.75151324e-01 2.89045344e-03 -3.91510352e-02 2.00192612e-02\n -2.50542462e-01 1.40413538e-01 2.73402989e-01 -1.24800112e-02\n -2.78579295e-02 1.09560871e-02]\n [ 7.70669758e-01 3.41089107e-02 -6.91979527e-01 2.14998290e-01\n -7.56335974e-01 1.11642249e-01 8.64728540e-02 -3.08381412e-02\n 5.75241268e-01 3.19680176e-03 -3.30683775e-02 2.00393815e-02\n -2.52493799e-01 1.40479907e-01 2.71884650e-01 -1.28803495e-02\n -4.32718247e-02 1.10274078e-02]\n [ 2.82782257e-01 3.67785022e-02 -5.03729522e-01 -3.57352710e+00\n -2.93302685e-02 -1.46335840e+00 3.21999699e-01 -1.25346899e-01\n 5.71607769e-01 7.01177109e-04 -4.23189253e-02 -3.83809283e-02\n 1.37736893e+00 1.27136186e-01 2.72281647e-01 6.98546693e-02\n -4.33612078e-01 -6.00699633e-02]\n [ 1.10805166e+00 -3.89037609e-01 -6.72038436e-01 4.25445944e-01\n -2.51215130e-01 1.07805572e-01 1.04409039e+00 -1.75064564e-01\n 5.72256744e-01 -2.79415050e-03 -1.42031517e-02 -7.52328873e-01\n 6.11344635e-01 1.70125067e-01 2.72484243e-01 -5.79660654e-01\n 1.63177967e-01 -2.64782548e-01]\n [ 8.05589736e-01 -2.97221214e-01 -5.73872745e-01 1.19244611e+00\n 8.31815749e-02 1.18785965e+00 1.21191874e-01 -9.96610373e-02\n 5.85434854e-01 2.60416884e-02 2.01203734e-01 4.33241343e-03\n 9.57513273e-01 1.85325533e-01 1.59753114e-01 -1.63506530e-03\n -4.85972345e-01 -3.30246747e-01]\n [ 7.02759206e-01 -3.48457426e-01 -7.02955365e-01 4.84334946e-01\n -9.47415084e-02 6.40853345e-02 4.83412266e-01 -2.30712760e-02\n 5.72885156e-01 1.40163871e-02 -5.38135469e-02 4.89727974e-01\n 8.62493694e-01 -2.28585467e-01 2.69795269e-01 2.60612637e-01\n 6.51975513e-01 8.56859565e-01]\n [ 2.99220145e-01 -4.03415054e-01 -6.85760260e-01 -2.84571022e-01\n 7.79358596e-02 6.04792237e-02 -1.64657846e-01 -1.31323978e-01\n 5.75241983e-01 3.18322051e-03 -3.30598466e-02 2.09355652e-02\n -2.52496630e-01 1.40462905e-01 2.71872282e-01 -1.27656301e-02\n -4.32942100e-02 1.10273520e-02]\n [-9.12095606e-01 2.06086731e+00 2.78581560e-01 -1.39046085e+00\n 2.35092449e+00 1.09246647e+00 1.77294207e+00 -1.23256378e-01\n -1.53526556e+00 9.68261361e-01 -1.43095529e+00 2.51785612e+00\n 1.99513912e+00 -4.93786454e-01 -5.78508568e+00 -1.77383214e-01\n 5.83852291e-01 2.22379470e+00]\n [-1.84964883e+00 -1.12796640e+00 1.63727534e+00 -8.04548264e-01\n 4.89633501e-01 9.39033985e-01 -3.03206980e-01 -2.03295365e-01\n 5.75241029e-01 3.19598150e-03 -3.30073088e-02 2.07121465e-02\n -2.52512038e-01 1.40438423e-01 2.71872252e-01 -1.27658956e-02\n -4.32941094e-02 1.08863227e-02]\n [-6.93669856e-01 -2.05499053e+00 -5.06433785e-01 -1.53179634e+00\n -1.08089602e+00 3.33903074e-01 -5.12683354e-02 -2.10121199e-01\n 5.75238287e-01 3.13463225e-03 -3.30136344e-02 2.08595842e-02\n -2.52542078e-01 1.40453622e-01 2.71872252e-01 -1.27659347e-02\n -4.32941020e-02 1.10437768e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAEAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAATKDOPT6kgz2PwvU8I4sUvuF+67uPwvU8l3FSPPVegjyPwvU8nXwEvTbICz6PwvU80bvQPeQzDT6PwvU8AvIAvaWGAT6PwvU8YlKSPapLCj6PwvU8PiwSPlUBmz2PwvU8Rd1APXU4Hj2PwvU80rDwPYL9Ej6PwvU8kA4QPn84LzuPwvU8HTNUvebWZT2PwvU8DRC0u9qUwr2PwvU84cSnPXyWbj2PwvU8asbnPZFhDD6PwvU8ydGXva5Ylj2PwvU8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAN5TfPhq/hL2PwvU8lL7TPulxdj2PwvU8pgyXPlBBDT2PwvU8gRf6PrIU8r2PwvU88K4BP3OHcD2PwvU8QduUPtQ43j2PwvU80NirPtMDMr2PwvU8la/iPgA/B76PwvU8158MP1NDHr2PwvU8kBSWPir+Ej6PwvU8Soj0Pl3ZeD2PwvU8i5m6PjCaIr2PwvU8zXS1Pl584j2PwvU8z97+PuIHCj6PwvU8U73xPiCvPjuPwvU8vreVPosMsbyPwvU8lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAQAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABMoM49PqSDPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAjixS+4X7ru4/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACXcVI89V6CPI/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACdfAS9NsgLPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADRu9A95DMNPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAC8gC9pYYBPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABiUpI9qksKPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAA+LBI+VQGbPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABF3UA9dTgePY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADSsPA9gv0SPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACQDhA+fzgvO4/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAdM1S95tZlPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAANELS72pTCvY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADhxKc9fJZuPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABqxuc9kWEMPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADJ0Ze9rliWPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LEEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.10089168 0.06427811 0.03 ]\n [-0.14506201 -0.00718676 0.03 ]\n [ 0.01284446 0.01591442 0.03 ]\n [-0.0323454 0.13650593 0.03 ]\n [ 0.10192073 0.13789326 0.03 ]\n [-0.0314808 0.12649019 0.03 ]\n [ 0.0714462 0.13505426 0.03 ]\n [ 0.1427469 0.07568613 0.03 ]\n [ 0.04708602 0.03862806 0.03 ]\n [ 0.11752476 0.14354518 0.03 ]\n [ 0.14068055 0.00267366 0.03 ]\n [-0.05180656 0.05611315 0.03 ]\n [-0.00549508 -0.09501047 0.03 ]\n [ 0.08191849 0.05824898 0.03 ]\n [ 0.11317141 0.13709094 0.03 ]\n [-0.0741306 0.07341133 0.03 ]]", "desired_goal": "[[ 0.43667766 -0.06481762 0.03 ]\n [ 0.41356337 0.06016723 0.03 ]\n [ 0.29501837 0.03448611 0.03 ]\n [ 0.48846057 -0.11820354 0.03 ]\n [ 0.5065756 0.05872292 0.03 ]\n [ 0.29073527 0.10850683 0.03 ]\n [ 0.33563852 -0.04346068 0.03 ]\n [ 0.44274583 -0.13207626 0.03 ]\n [ 0.54931396 -0.03863842 0.03 ]\n [ 0.29312563 0.14354768 0.03 ]\n [ 0.4776023 0.06075417 0.03 ]\n [ 0.3644527 -0.03969783 0.03 ]\n [ 0.35440674 0.11058877 0.03 ]\n [ 0.49779364 0.1347957 0.03 ]\n [ 0.47214755 0.00290961 0.03 ]\n [ 0.29241747 -0.02161243 0.03 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.0089168e-01 6.4278111e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.4506201e-01 -7.1867560e-03\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.2844465e-02 1.5914420e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -3.2345403e-02 1.3650593e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.0192073e-01 1.3789326e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -3.1480797e-02 1.2649019e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 7.1446195e-02 1.3505426e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.4274690e-01 7.5686134e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 4.7086019e-02 3.8628060e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.1752476e-01 1.4354518e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.4068055e-01 2.6736555e-03\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -5.1806558e-02 5.6113146e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -5.4950775e-03 -9.5010474e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 8.1918485e-02 5.8248982e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.1317141e-01 1.3709094e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -7.4130602e-02 7.3411331e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0DVDC0gpz91dX2UKGgGR8BAAAAAAAAAaAdLIWgIR0DVDDT2USqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDCRFQVKxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDE5fReC1dX2UKGgGR8AqAAAAAAAAaAdLDmgIR0DVDEnHmzSkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDBzsyBTXdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDFmIsRQKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDGR9gF5fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDHMLofSydX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDICQ1aW5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDFMxQBPsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDD+S4e90dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDFTENvwWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDH12mpEQdX2UKGgGR8AxAAAAAAAAaAdLEmgIR0DVDIAWRA8kdX2UKGgGR8AoAAAAAAAAaAdLDWgIR0DVDHC/pMYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDFK5paicdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDJ8HyEtedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDH3LcKw7dX2UKGgGR8BBAAAAAAAAaAdLI2gIR0DVDMqxB3RpdX2UKGgGR8A3AAAAAAAAaAdLGGgIR0DVDKFPi1iOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDJvpSrHVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDIubMHKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDLXrNW2gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDLGlKsdUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDIThgmZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDMzm3fALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDNvufEn9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDLzAFgUldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDKl5gPVedX2UKGgGR8AsAAAAAAAAaAdLD2gIR0DVDMLwlSjydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDOmXWvr4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDOwfMfRvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDL/kili0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDQuLrHENdX2UKGgGR8AoAAAAAAAAaAdLDWgIR0DVDQjTF2mpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDOuY5T60dX2UKGgGR8A3AAAAAAAAaAdLGGgIR0DVDRza+N96dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDTc+otL+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDQi7nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDPgBfa6CdX2UKGgGR8BGgAAAAAAAaAdLLmgIR0DVDT5Tgl4UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDSHBSDRMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDRzhxYJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDPACHRCydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDTczxgAqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDST349HMdX2UKGgGR8A2AAAAAAAAaAdLF2gIR0DVDRVzZHurdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDRFbpu/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDSv7655JdX2UKGgGR8A7AAAAAAAAaAdLHGgIR0DVDVT/zasZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDSXwiJO4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDXUPBi1BdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDUgx8D0UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDXCSZBszdX2UKGgGR8BFgAAAAAAAaAdLLGgIR0DVDWXfgrH3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZ+IWP92dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDWIb1h9cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDaj1WbPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDYxbyH2zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDYhjQRf4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDVuAvtdBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDaNNvfj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZKAvtdBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDX7q/ub7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZgl8gIQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDcFuNxVAdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDZAmeDnOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZJQUHpsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDdzTgEU1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDa+pm29ddX2UKGgGR8A3AAAAAAAAaAdLGGgIR0DVDcVa6jFidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDdlNfw7UdX2UKGgGR8A5AAAAAAAAaAdLGmgIR0DVDbboIOYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDdHdBSk1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDgvYvnKXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDhJ3cHnmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfXavicYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfGq814xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDcT0h/y5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDgydBjWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDgBmWdEtdX2UKGgGR8AuAAAAAAAAaAdLEGgIR0DVDjN37k4ndX2UKGgGR8AwAAAAAAAAaAdLEWgIR0DVDedHWjGldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDigcU/OddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfWzZ6D5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfbEOy3TdX2UKGgGR8A5AAAAAAAAaAdLGmgIR0DVDiSbx3FDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDkHnDBM0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDhTO+qR2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDioeYD1XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDj4/s3Q2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDhpGCqZMdX2UKGgGR8AyAAAAAAAAaAdLE2gIR0DVDgt4zJp4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDjN8LKFJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDm0FGG21dX2UKGgGR8AzAAAAAAAAaAdLFGgIR0DVDkuqIacadX2UKGgGR8AzAAAAAAAAaAdLFGgIR0DVDmnhn8KpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDltEUj9odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDnL3Zf2LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImIiYmIiYiJiYiJiYmJiIiJiYmIiImJiYmJiYmJiYiJiYmJiImIiYmJiImJiYmJiImJiImJiImIiYmJiYmJiYmJiYmIiYmJiImIiYmJiYmJiYmIiImJiYiJiYmJiYiJiYiIiYllLg=="}, "_n_updates": 6120, "n_steps": 2048, "gamma": 0.98, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x7fc8823501f0>", "reset": "<function DictRolloutBuffer.reset at 0x7fc882350280>", "add": "<function DictRolloutBuffer.add at 0x7fc882350310>", "get": "<function DictRolloutBuffer.get at 0x7fc8823503a0>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x7fc882350430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc88234c680>"}, "rollout_buffer_kwargs": {}, "batch_size": 2048, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVbQUAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsDSxNDDHQAiAB8AIMBgwFTAJROhZRoCoWUaAyFlIxgL2hvbWUvdG9tZWsvcHl0b3JjaF9sZWFybmluZy92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlGgRhZQpdJRSlH2UKGgWjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UaBiMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5RoGoxgL2hvbWUvdG9tZWsvcHl0b3JjaF9sZWFybmluZy92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCNoQn2UfZQoaBhoNmgmjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UaCh9lGgqTmgrTmgsaD1oLU5oLmgwaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgyKYwBX5SFlGg1jARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaDtOTmgdKVKUhZR0lFKUaCNoU32UfZQoaBhoSmgmjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgofZRoKk5oK05oLGg9aC1OaC5oMEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaFtdlGhdfZR1hpSGUjCFlFKUhZRoW12UaF19lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVKAQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCdoHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCxLEoWUaC5oHCiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCR0lFKUaDNoHCiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz8jqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
ppo-PandaSlide-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16dc62ea5a9d9de817a430ee5d65b99e6329b18325e3b7f23e04095fd9bd46ab
|
3 |
+
size 12996418
|
ppo-PandaSlide-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.2
|
ppo-PandaSlide-v3/data
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc88217d2d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc8821775c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVbwAAAAAAAAB9lCiMCG5ldF9hcmNolH2UKIwCcGmUXZQoTQACTQACTQACZYwCdmaUXZQoTQACTQACTQACZXWMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUdS4=",
|
15 |
+
"net_arch": {
|
16 |
+
"pi": [
|
17 |
+
512,
|
18 |
+
512,
|
19 |
+
512
|
20 |
+
],
|
21 |
+
"vf": [
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>"
|
28 |
+
},
|
29 |
+
"num_timesteps": 10027008,
|
30 |
+
"_total_timesteps": 10000000,
|
31 |
+
"_num_timesteps_at_start": 0,
|
32 |
+
"seed": null,
|
33 |
+
"action_noise": null,
|
34 |
+
"start_time": 1718108038164682248,
|
35 |
+
"learning_rate": 0.00015,
|
36 |
+
"tensorboard_log": "./ppoPandaSlide-v3/",
|
37 |
+
"_last_obs": {
|
38 |
+
":type:": "<class 'collections.OrderedDict'>",
|
39 |
+
":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAZcUsvt3/qj4bQxM/zB1pvsqnV74FQxM/b4N2vpsuXz71QhM/PcLPviM4wD5PsSo//aLVPWXXRb4GQxM/tzyZvu2Toz7F7xM/3kWxvlj2nj4ePRM/rhixPUWg/LwDQxM/Jd2kPvBaAL7jVBI/waSFPyBEM75rfxI/cjP4PRYbzL0P3xU/0IH3Pvn/vLyaqBI/EZwovst5Br4PQxM/xO/iP9dt/L2Vg8S/8j2bvqksUL7/QhM/v/5RvQMqV77RQhM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAvbO2v+W7lb88Pbsxhwy2vSzArr48PbsxWUhEP+yzk788Pbsx/UWDP+7gcT88PbsxKVwsv1tanL48PbsxnMRLvxV9ZD48Pbsx1kEOPgK6rL88Pbsx5pSEvhyuhT88PbsxUq70PT4t3L88PbsxFx+oPMKUfL88PbsxqewfvzPAsb88PbsxFtmyPyScbr88PbsxrReoPVqEBr88PbsxLqGNPnV+jL88PbsxJTKhPy322j88Pbsx7i3Fv0TMpL08PbsxlGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAQAAAAAAABvyts8JObEPnoPOL84UNI+H7t5PwI9xj1lxSy+3f+qPhtDEz8QAUs7yu8GvXSCoDzMSYG+gNAPPtcyiz6FJ1G8OFUxvWQEMjx/pz/APYgUvtbxOkDEhMu+e3BvP2RvcT/MHWm+yqdXvgVDEz8Bc087n4QHvQItrTxYR4G+rNEPPtcyiz4OKFG8K1UxvZYDNzzBH5k+LkYbPT+b4L3VYyO9CTyPP8yLCcBvg3a+my5fPvVCEz9T0Uo7wxkIvS3Bqjw8QIG+cLgPPkg2iz7C4US8LZovvTSsNDyxOy0/LDojPdBSjj85Vrs+n8Wdu0UooT09ws++IzjAPk+xKj8anlA7zmkHvVjXpjw8R4G+hdUPPtcyiz4NKFG8KlUxvRGsNDzCVCQ/jhEEvxlcNL+0Fhk/tEaAPrCxlT39otU9ZddFvgZDEz+sv1A7S4EHvShbrjxNRoG+LtYPPiA0iz5db1G8HRoxvRGsNDwJgYy9YQk1Po7Y174bwxbAbgo/v+ylwT63PJm+7ZOjPsXvEz8eZaO8Ma/UPbu1UT6tQ7g+mo9vPOwpjz6DpJ2/HYQ/v0Q2Vz8+1NE+LvKovnrOJz8VBPA94JZ3P/vruL7eRbG+WPaePh49Ez/DbT071lwgvW//ozwaR4C+kcgPPnr7iz72eEy8UDbkvCmBMzydSkU/ybULPZIlMb+DKFw+PJ9Bv7Gk5D2uGLE9RaD8vANDEz9vgVE7tXIHvaEppDzeRoG+99kPPnc0iz4aCFO8zD0xvU2sNDzWyJA+DqUWPWv0AL+rtGTACEbwvFRPu78l3aQ+8FoAvuNUEj8zzzc6nFYtvVI1Hb2gTbA//S8CPoBoiz73D489ZwLevuwLdr2j1I0/8C/HvrYKLL8N1Nk+RZ+AvivJ3D3BpIU/IEQzvmt/Ej8RHje7VrRovKCYQL8VgRw/RDUuPg6Diz6kZBS/IBgnPpSRh74hO04/YS2YvlPpEr8Topg/GluqPckLmD9yM/g9FhvMvQ/fFT9hVdU8WghOPuv2jTuXH3U/+sU9PlKWIz6wT9a6XtH4vhoWqb4H6DM/A2myvuL0M7/A+vc+1gfCvSw/gz3Qgfc++f+8vJqoEj/9pGU8mGtcvaC9+j5jzFw/TxJqvpsiij4Fb4U+3ucmPyZbWz9iM5k+a4zOvvyNL79Ls5G+1pyfPRC5dz0RnCi+y3kGvg9DEz+UnVA7w2kHvRCBqzw9R4G+gtUPPtgyiz7vJlG8RVUxvRGsNDwZf2m/QOUDQD6ijj6f+rG/jHUWQPHViz/E7+I/1238vZWDxL/633c/iym3v44kIUC4YP8/lNH8vmwfucDyozW+WHcVP6dSDkBLwey/NGGQvz2S0T/g9k2/PrH6PohkcD/yPZu+qSxQvv9CEz+sc1E7rDIHvYWsqTxCSYG+F88PPtcyiz4MKFG8KlUxvYxcMjxZlDG/94QDwKWlAb/nEcS/zVqKv1j1qj6//lG9AypXvtFCEz9nbk07TjkHvbjhqjwyTYG+E9MPPtcyiz42KFG8KFUxvfXwNDyUaA5LEEsShpRoEnSUUpR1Lg==",
|
40 |
+
"achieved_goal": "[[-0.16872175 0.33398333 0.5752427 ]\n [-0.22765273 -0.210601 0.5752414 ]\n [-0.24073575 0.21795122 0.57524043]\n [-0.4057788 0.3754283 0.666768 ]\n [ 0.10431478 -0.19320448 0.57524145]\n [-0.29929134 0.31948796 0.57787734]\n [-0.34623617 0.3104732 0.5751513 ]\n [ 0.08647285 -0.03083814 0.57524127]\n [ 0.3219997 -0.1253469 0.57160777]\n [ 1.0440904 -0.17506456 0.57225674]\n [ 0.12119187 -0.09966104 0.58543485]\n [ 0.48341227 -0.02307128 0.57288516]\n [-0.16465785 -0.13132398 0.575242 ]\n [ 1.7729421 -0.12325638 -1.5352656 ]\n [-0.30320698 -0.20329536 0.575241 ]\n [-0.05126834 -0.2101212 0.5752383 ]]",
|
41 |
+
"desired_goal": "[[-1.42736018e+00 -1.16979659e+00 5.44937784e-09]\n [-8.88910815e-02 -3.41309905e-01 5.44937784e-09]\n [ 7.66728938e-01 -1.15392828e+00 5.44937784e-09]\n [ 1.02557337e+00 9.44838405e-01 5.44937784e-09]\n [-6.73281252e-01 -3.05376858e-01 5.44937784e-09]\n [-7.95968771e-01 2.23133400e-01 5.44937784e-09]\n [ 1.38923019e-01 -1.34942651e+00 5.44937784e-09]\n [-2.58948505e-01 1.04437590e+00 5.44937784e-09]\n [ 1.19473115e-01 -1.72013068e+00 5.44937784e-09]\n [ 2.05226373e-02 -9.86644864e-01 5.44937784e-09]\n [-6.24704897e-01 -1.38867795e+00 5.44937784e-09]\n [ 1.39724994e+00 -9.32070017e-01 5.44937784e-09]\n [ 8.20764080e-02 -5.25457025e-01 5.44937784e-09]\n [ 2.76620328e-01 -1.09760916e+00 5.44937784e-09]\n [ 1.25934279e+00 1.71063769e+00 5.44937784e-09]\n [-1.54046416e+00 -8.04677308e-02 5.44937784e-09]]",
|
42 |
+
"observation": "[[ 2.68299263e-02 3.84568334e-01 -7.18986154e-01 4.10768270e-01\n 9.75511491e-01 9.67960507e-02 -1.68721750e-01 3.33983332e-01\n 5.75242698e-01 3.09759751e-03 -3.29435244e-02 1.95934549e-02\n -2.52516150e-01 1.40443802e-01 2.71872252e-01 -1.27657698e-02\n -4.32941616e-02 1.08653046e-02]\n [-2.99459815e+00 -1.45050958e-01 2.92101049e+00 -3.97497296e-01\n 9.35310066e-01 9.43105936e-01 -2.27652729e-01 -2.10601002e-01\n 5.75241387e-01 3.16542410e-03 -3.30854617e-02 2.11396255e-02\n -2.52497435e-01 1.40448272e-01 2.71872252e-01 -1.27658974e-02\n -4.32941131e-02 1.11702885e-02]\n [ 2.99070388e-01 3.79087254e-02 -1.09671108e-01 -3.98901291e-02\n 1.11901963e+00 -2.14915752e+00 -2.40735754e-01 2.17951223e-01\n 5.75240433e-01 3.09475209e-03 -3.32276933e-02 2.08440665e-02\n -2.52443194e-01 1.40352011e-01 2.71898508e-01 -1.20167155e-02\n -4.28716429e-02 1.10273845e-02]\n [ 6.76692069e-01 3.98503989e-02 1.11190224e+00 3.65892202e-01\n -4.81481804e-03 7.86900893e-02 -4.05778795e-01 3.75428289e-01\n 6.66768014e-01 3.18325171e-03 -3.30598876e-02 2.03663558e-02\n -2.52496600e-01 1.40462950e-01 2.71872252e-01 -1.27658965e-02\n -4.32941094e-02 1.10273520e-02]\n [ 6.41918302e-01 -5.15892863e-01 -7.04530299e-01 5.98002672e-01\n 2.50539422e-01 7.30928183e-02 1.04314782e-01 -1.93204477e-01\n 5.75241446e-01 3.18525266e-03 -3.30822878e-02 2.12837011e-02\n -2.52489477e-01 1.40465468e-01 2.71882057e-01 -1.27828987e-02\n -4.32377942e-02 1.10273520e-02]\n [-6.86054900e-02 1.76793590e-01 -4.21574056e-01 -2.35565829e+00\n -7.46252894e-01 3.78219008e-01 -2.99291342e-01 3.19487959e-01\n 5.77877343e-01 -1.99456774e-02 1.03849776e-01 2.04794809e-01\n 3.59891325e-01 1.46216396e-02 2.79616714e-01 -1.23158300e+00\n -7.48109639e-01 8.40671778e-01]\n [ 4.09822404e-01 -3.29972684e-01 6.55494332e-01 1.17195286e-01\n 9.67145920e-01 -3.61175388e-01 -3.46236169e-01 3.10473204e-01\n 5.75151324e-01 2.89045344e-03 -3.91510352e-02 2.00192612e-02\n -2.50542462e-01 1.40413538e-01 2.73402989e-01 -1.24800112e-02\n -2.78579295e-02 1.09560871e-02]\n [ 7.70669758e-01 3.41089107e-02 -6.91979527e-01 2.14998290e-01\n -7.56335974e-01 1.11642249e-01 8.64728540e-02 -3.08381412e-02\n 5.75241268e-01 3.19680176e-03 -3.30683775e-02 2.00393815e-02\n -2.52493799e-01 1.40479907e-01 2.71884650e-01 -1.28803495e-02\n -4.32718247e-02 1.10274078e-02]\n [ 2.82782257e-01 3.67785022e-02 -5.03729522e-01 -3.57352710e+00\n -2.93302685e-02 -1.46335840e+00 3.21999699e-01 -1.25346899e-01\n 5.71607769e-01 7.01177109e-04 -4.23189253e-02 -3.83809283e-02\n 1.37736893e+00 1.27136186e-01 2.72281647e-01 6.98546693e-02\n -4.33612078e-01 -6.00699633e-02]\n [ 1.10805166e+00 -3.89037609e-01 -6.72038436e-01 4.25445944e-01\n -2.51215130e-01 1.07805572e-01 1.04409039e+00 -1.75064564e-01\n 5.72256744e-01 -2.79415050e-03 -1.42031517e-02 -7.52328873e-01\n 6.11344635e-01 1.70125067e-01 2.72484243e-01 -5.79660654e-01\n 1.63177967e-01 -2.64782548e-01]\n [ 8.05589736e-01 -2.97221214e-01 -5.73872745e-01 1.19244611e+00\n 8.31815749e-02 1.18785965e+00 1.21191874e-01 -9.96610373e-02\n 5.85434854e-01 2.60416884e-02 2.01203734e-01 4.33241343e-03\n 9.57513273e-01 1.85325533e-01 1.59753114e-01 -1.63506530e-03\n -4.85972345e-01 -3.30246747e-01]\n [ 7.02759206e-01 -3.48457426e-01 -7.02955365e-01 4.84334946e-01\n -9.47415084e-02 6.40853345e-02 4.83412266e-01 -2.30712760e-02\n 5.72885156e-01 1.40163871e-02 -5.38135469e-02 4.89727974e-01\n 8.62493694e-01 -2.28585467e-01 2.69795269e-01 2.60612637e-01\n 6.51975513e-01 8.56859565e-01]\n [ 2.99220145e-01 -4.03415054e-01 -6.85760260e-01 -2.84571022e-01\n 7.79358596e-02 6.04792237e-02 -1.64657846e-01 -1.31323978e-01\n 5.75241983e-01 3.18322051e-03 -3.30598466e-02 2.09355652e-02\n -2.52496630e-01 1.40462905e-01 2.71872282e-01 -1.27656301e-02\n -4.32942100e-02 1.10273520e-02]\n [-9.12095606e-01 2.06086731e+00 2.78581560e-01 -1.39046085e+00\n 2.35092449e+00 1.09246647e+00 1.77294207e+00 -1.23256378e-01\n -1.53526556e+00 9.68261361e-01 -1.43095529e+00 2.51785612e+00\n 1.99513912e+00 -4.93786454e-01 -5.78508568e+00 -1.77383214e-01\n 5.83852291e-01 2.22379470e+00]\n [-1.84964883e+00 -1.12796640e+00 1.63727534e+00 -8.04548264e-01\n 4.89633501e-01 9.39033985e-01 -3.03206980e-01 -2.03295365e-01\n 5.75241029e-01 3.19598150e-03 -3.30073088e-02 2.07121465e-02\n -2.52512038e-01 1.40438423e-01 2.71872252e-01 -1.27658956e-02\n -4.32941094e-02 1.08863227e-02]\n [-6.93669856e-01 -2.05499053e+00 -5.06433785e-01 -1.53179634e+00\n -1.08089602e+00 3.33903074e-01 -5.12683354e-02 -2.10121199e-01\n 5.75238287e-01 3.13463225e-03 -3.30136344e-02 2.08595842e-02\n -2.52542078e-01 1.40453622e-01 2.71872252e-01 -1.27659347e-02\n -4.32941020e-02 1.10437768e-02]]"
|
43 |
+
},
|
44 |
+
"_last_episode_starts": {
|
45 |
+
":type:": "<class 'numpy.ndarray'>",
|
46 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAEAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
47 |
+
},
|
48 |
+
"_last_original_obs": {
|
49 |
+
":type:": "<class 'collections.OrderedDict'>",
|
50 |
+
":serialized:": "gAWV+wYAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAATKDOPT6kgz2PwvU8I4sUvuF+67uPwvU8l3FSPPVegjyPwvU8nXwEvTbICz6PwvU80bvQPeQzDT6PwvU8AvIAvaWGAT6PwvU8YlKSPapLCj6PwvU8PiwSPlUBmz2PwvU8Rd1APXU4Hj2PwvU80rDwPYL9Ej6PwvU8kA4QPn84LzuPwvU8HTNUvebWZT2PwvU8DRC0u9qUwr2PwvU84cSnPXyWbj2PwvU8asbnPZFhDD6PwvU8ydGXva5Ylj2PwvU8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAN5TfPhq/hL2PwvU8lL7TPulxdj2PwvU8pgyXPlBBDT2PwvU8gRf6PrIU8r2PwvU88K4BP3OHcD2PwvU8QduUPtQ43j2PwvU80NirPtMDMr2PwvU8la/iPgA/B76PwvU8158MP1NDHr2PwvU8kBSWPir+Ej6PwvU8Soj0Pl3ZeD2PwvU8i5m6PjCaIr2PwvU8zXS1Pl584j2PwvU8z97+PuIHCj6PwvU8U73xPiCvPjuPwvU8vreVPosMsbyPwvU8lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWgAQAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABMoM49PqSDPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAjixS+4X7ru4/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACXcVI89V6CPI/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACdfAS9NsgLPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADRu9A95DMNPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAC8gC9pYYBPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABiUpI9qksKPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAA+LBI+VQGbPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABF3UA9dTgePY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADSsPA9gv0SPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACQDhA+fzgvO4/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAdM1S95tZlPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAANELS72pTCvY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADhxKc9fJZuPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABqxuc9kWEMPo/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADJ0Ze9rliWPY/C9TwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LEEsShpRoEnSUUpR1Lg==",
|
51 |
+
"achieved_goal": "[[ 0.10089168 0.06427811 0.03 ]\n [-0.14506201 -0.00718676 0.03 ]\n [ 0.01284446 0.01591442 0.03 ]\n [-0.0323454 0.13650593 0.03 ]\n [ 0.10192073 0.13789326 0.03 ]\n [-0.0314808 0.12649019 0.03 ]\n [ 0.0714462 0.13505426 0.03 ]\n [ 0.1427469 0.07568613 0.03 ]\n [ 0.04708602 0.03862806 0.03 ]\n [ 0.11752476 0.14354518 0.03 ]\n [ 0.14068055 0.00267366 0.03 ]\n [-0.05180656 0.05611315 0.03 ]\n [-0.00549508 -0.09501047 0.03 ]\n [ 0.08191849 0.05824898 0.03 ]\n [ 0.11317141 0.13709094 0.03 ]\n [-0.0741306 0.07341133 0.03 ]]",
|
52 |
+
"desired_goal": "[[ 0.43667766 -0.06481762 0.03 ]\n [ 0.41356337 0.06016723 0.03 ]\n [ 0.29501837 0.03448611 0.03 ]\n [ 0.48846057 -0.11820354 0.03 ]\n [ 0.5065756 0.05872292 0.03 ]\n [ 0.29073527 0.10850683 0.03 ]\n [ 0.33563852 -0.04346068 0.03 ]\n [ 0.44274583 -0.13207626 0.03 ]\n [ 0.54931396 -0.03863842 0.03 ]\n [ 0.29312563 0.14354768 0.03 ]\n [ 0.4776023 0.06075417 0.03 ]\n [ 0.3644527 -0.03969783 0.03 ]\n [ 0.35440674 0.11058877 0.03 ]\n [ 0.49779364 0.1347957 0.03 ]\n [ 0.47214755 0.00290961 0.03 ]\n [ 0.29241747 -0.02161243 0.03 ]]",
|
53 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.0089168e-01 6.4278111e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.4506201e-01 -7.1867560e-03\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.2844465e-02 1.5914420e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -3.2345403e-02 1.3650593e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.0192073e-01 1.3789326e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -3.1480797e-02 1.2649019e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 7.1446195e-02 1.3505426e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.4274690e-01 7.5686134e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 4.7086019e-02 3.8628060e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.1752476e-01 1.4354518e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.4068055e-01 2.6736555e-03\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -5.1806558e-02 5.6113146e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -5.4950775e-03 -9.5010474e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 8.1918485e-02 5.8248982e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 1.1317141e-01 1.3709094e-01\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -7.4130602e-02 7.3411331e-02\n 2.9999999e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"
|
54 |
+
},
|
55 |
+
"_episode_num": 0,
|
56 |
+
"use_sde": false,
|
57 |
+
"sde_sample_freq": -1,
|
58 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
59 |
+
"_stats_window_size": 100,
|
60 |
+
"ep_info_buffer": {
|
61 |
+
":type:": "<class 'collections.deque'>",
|
62 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0DVDC0gpz91dX2UKGgGR8BAAAAAAAAAaAdLIWgIR0DVDDT2USqVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDCRFQVKxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDE5fReC1dX2UKGgGR8AqAAAAAAAAaAdLDmgIR0DVDEnHmzSkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDBzsyBTXdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDFmIsRQKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDGR9gF5fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDHMLofSydX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDICQ1aW5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDFMxQBPsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDD+S4e90dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDFTENvwWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDH12mpEQdX2UKGgGR8AxAAAAAAAAaAdLEmgIR0DVDIAWRA8kdX2UKGgGR8AoAAAAAAAAaAdLDWgIR0DVDHC/pMYedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDFK5paicdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDJ8HyEtedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDH3LcKw7dX2UKGgGR8BBAAAAAAAAaAdLI2gIR0DVDMqxB3RpdX2UKGgGR8A3AAAAAAAAaAdLGGgIR0DVDKFPi1iOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDJvpSrHVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDIubMHKPdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDLXrNW2gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDLGlKsdUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDIThgmZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDMzm3fALdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDNvufEn9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDLzAFgUldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDKl5gPVedX2UKGgGR8AsAAAAAAAAaAdLD2gIR0DVDMLwlSjydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDOmXWvr4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDOwfMfRvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDL/kili0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDQuLrHENdX2UKGgGR8AoAAAAAAAAaAdLDWgIR0DVDQjTF2mpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDOuY5T60dX2UKGgGR8A3AAAAAAAAaAdLGGgIR0DVDRza+N96dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDTc+otL+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDQi7nPmgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDPgBfa6CdX2UKGgGR8BGgAAAAAAAaAdLLmgIR0DVDT5Tgl4UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDSHBSDRMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDRzhxYJWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDPACHRCydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDTczxgAqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDST349HMdX2UKGgGR8A2AAAAAAAAaAdLF2gIR0DVDRVzZHurdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDRFbpu/DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDSv7655JdX2UKGgGR8A7AAAAAAAAaAdLHGgIR0DVDVT/zasZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDSXwiJO4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDXUPBi1BdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDUgx8D0UdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDXCSZBszdX2UKGgGR8BFgAAAAAAAaAdLLGgIR0DVDWXfgrH3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZ+IWP92dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDWIb1h9cdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDaj1WbPQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDYxbyH2zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDYhjQRf4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDVuAvtdBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDaNNvfj0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZKAvtdBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDX7q/ub7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZgl8gIQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDcFuNxVAdX2UKGgGR8A0AAAAAAAAaAdLFWgIR0DVDZAmeDnOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDZJQUHpsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDdzTgEU1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDa+pm29ddX2UKGgGR8A3AAAAAAAAaAdLGGgIR0DVDcVa6jFidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDdlNfw7UdX2UKGgGR8A5AAAAAAAAaAdLGmgIR0DVDbboIOYqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDdHdBSk1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDgvYvnKXdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDhJ3cHnmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfXavicYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfGq814xdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDcT0h/y5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDgydBjWkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDgBmWdEtdX2UKGgGR8AuAAAAAAAAaAdLEGgIR0DVDjN37k4ndX2UKGgGR8AwAAAAAAAAaAdLEWgIR0DVDedHWjGldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDigcU/OddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfWzZ6D5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDfbEOy3TdX2UKGgGR8A5AAAAAAAAaAdLGmgIR0DVDiSbx3FDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDkHnDBM0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDhTO+qR2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDioeYD1XdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDj4/s3Q2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDhpGCqZMdX2UKGgGR8AyAAAAAAAAaAdLE2gIR0DVDgt4zJp4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDjN8LKFJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDm0FGG21dX2UKGgGR8AzAAAAAAAAaAdLFGgIR0DVDkuqIacadX2UKGgGR8AzAAAAAAAAaAdLFGgIR0DVDmnhn8KpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDltEUj9odX2UKGgGR8BJAAAAAAAAaAdLMmgIR0DVDnL3Zf2LdWUu"
|
63 |
+
},
|
64 |
+
"ep_success_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImIiYmIiYiJiYiJiYmJiIiJiYmIiImJiYmJiYmJiYiJiYmJiImIiYmJiImJiYmJiImJiImJiImIiYmJiYmJiYmJiYmIiYmJiImIiYmJiYmJiYmIiImJiYiJiYmJiYiJiYiIiYllLg=="
|
67 |
+
},
|
68 |
+
"_n_updates": 6120,
|
69 |
+
"n_steps": 2048,
|
70 |
+
"gamma": 0.98,
|
71 |
+
"gae_lambda": 0.95,
|
72 |
+
"ent_coef": 0.01,
|
73 |
+
"vf_coef": 0.5,
|
74 |
+
"max_grad_norm": 0.5,
|
75 |
+
"rollout_buffer_class": {
|
76 |
+
":type:": "<class 'abc.ABCMeta'>",
|
77 |
+
":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu",
|
78 |
+
"__module__": "stable_baselines3.common.buffers",
|
79 |
+
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}",
|
80 |
+
"__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
81 |
+
"__init__": "<function DictRolloutBuffer.__init__ at 0x7fc8823501f0>",
|
82 |
+
"reset": "<function DictRolloutBuffer.reset at 0x7fc882350280>",
|
83 |
+
"add": "<function DictRolloutBuffer.add at 0x7fc882350310>",
|
84 |
+
"get": "<function DictRolloutBuffer.get at 0x7fc8823503a0>",
|
85 |
+
"_get_samples": "<function DictRolloutBuffer._get_samples at 0x7fc882350430>",
|
86 |
+
"__abstractmethods__": "frozenset()",
|
87 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc88234c680>"
|
88 |
+
},
|
89 |
+
"rollout_buffer_kwargs": {},
|
90 |
+
"batch_size": 2048,
|
91 |
+
"n_epochs": 20,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVbQUAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsDSxNDDHQAiAB8AIMBgwFTAJROhZRoCoWUaAyFlIxgL2hvbWUvdG9tZWsvcHl0b3JjaF9sZWFybmluZy92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwIPGxhbWJkYT6US2FDAgwAlGgRhZQpdJRSlH2UKGgWjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UaBiMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5RoGoxgL2hvbWUvdG9tZWsvcHl0b3JjaF9sZWFybmluZy92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgdKVKUhZR0lFKUaCNoQn2UfZQoaBhoNmgmjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UaCh9lGgqTmgrTmgsaD1oLU5oLmgwaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgyKYwBX5SFlGg1jARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaDtOTmgdKVKUhZR0lFKUaCNoU32UfZQoaBhoSmgmjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgofZRoKk5oK05oLGg9aC1OaC5oMEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaFtdlGhdfZR1hpSGUjCFlFKUhZRoW12UaF19lHWGlIZSMC4="
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null,
|
99 |
+
"observation_space": {
|
100 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
101 |
+
":serialized:": "gAWVKAQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCdoHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCxLEoWUaC5oHCiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCR0lFKUaDNoHCiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
102 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (18,), float32))])",
|
103 |
+
"_shape": null,
|
104 |
+
"dtype": null,
|
105 |
+
"_np_random": null
|
106 |
+
},
|
107 |
+
"action_space": {
|
108 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
109 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
110 |
+
"dtype": "float32",
|
111 |
+
"bounded_below": "[ True True True]",
|
112 |
+
"bounded_above": "[ True True True]",
|
113 |
+
"_shape": [
|
114 |
+
3
|
115 |
+
],
|
116 |
+
"low": "[-1. -1. -1.]",
|
117 |
+
"high": "[1. 1. 1.]",
|
118 |
+
"low_repr": "-1.0",
|
119 |
+
"high_repr": "1.0",
|
120 |
+
"_np_random": null
|
121 |
+
},
|
122 |
+
"n_envs": 16,
|
123 |
+
"lr_schedule": {
|
124 |
+
":type:": "<class 'function'>",
|
125 |
+
":serialized:": "gAWVsQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMCDACUjA52YWx1ZV9zY2hlZHVsZZSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGAvaG9tZS90b21lay9weXRvcmNoX2xlYXJuaW5nL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgQBlIwDdmFslIWUKXSUUpRoFU5OaB0pUpSFlHSUUpRoI2g9fZR9lChoGGg0aCaMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCh9lGgqTmgrTmgsaBloLU5oLmgwRz8jqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRV2UaEd9lHWGlIZSMC4="
|
126 |
+
}
|
127 |
+
}
|
ppo-PandaSlide-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b42d48955a6e7da4f12e005c0a2d2d9bee67773c254a834e438fd0b7f4239274
|
3 |
+
size 8640637
|
ppo-PandaSlide-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:942fa2fec8a653992b3d06078d499d54f3a2d6107ea6478b0d5272c738e6d299
|
3 |
+
size 4319907
|
ppo-PandaSlide-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-PandaSlide-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.3.2
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (815 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -40.4, "std_reward": 14.664242223858686, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-11T20:19:14.157116"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd2f1f1d7445eff6ad6402494f1a3f3e2ddec7a7d6a786c055a0e296ae2df71d
|
3 |
+
size 3072
|