File size: 1,599 Bytes
f211e05 0e40916 dfe7a9a 0e40916 c057496 6dd4b2d c057496 1c299fa c057496 6dd4b2d 8e69c0d 6a29910 c47847c dec5886 c47847c 1c299fa 00ba90c 9627eaf c47847c 6a29910 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
language:
- ar
metrics:
- accuracy
- bleu
library_name: transformers
pipeline_tag: text2text-generation
---
This model is under trial.
The number in the generated text represents the category of the news, as shown below.
category_mapping = {
'Political':1,
'Economy':2,
'Health':3,
'Sport':4,
'Culture':5,
'Technology':6,
'Art':7,
'Accidents':8
}
![image/png](https://cdn-uploads.huggingface.co/production/uploads/645817bb72b60ae7a37f8f40/6gZDjcAOhWLvN5xF-E2FE.png)
# Example usage
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline
from arabert.preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor(model_name="aubmindlab/bert-base-arabertv2")
model_name="Hezam/arabic-T5-news-classification-generation"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك"
text_clean = arabert_prep.preprocess(text)
g=generation_pipeline(text_clean,
num_beams=10,
max_length=config.Generation_LEN,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]["generated_text"]
|