File size: 2,572 Bytes
f211e05 0e40916 419c959 dfe7a9a 0e40916 0196e3b 419c959 0196e3b 419c959 0196e3b 419c959 0196e3b 419c959 0196e3b 419c959 7bc5e31 0196e3b 7bc5e31 6dd4b2d 9a775a4 8e69c0d 0196e3b 6a29910 2e6096e c47847c dec5886 c47847c 1c299fa 00ba90c 9627eaf c47847c 2e6096e 6a29910 2e6096e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- ar
metrics:
- Accuracy
- F1_score
- BLEU
library_name: transformers
pipeline_tag: text2text-generation
tags:
- Classification and Generation
- Classification
- Generation
- ArabicT5
- Text Classification
- Text2Text Generation
widget:
- text: >-
خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا
في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار
للانترانيك
---
# ArabicT5: Classification and Generation of Arabic News
- The model is under trial
# The number in the generated text represents the category of the news, as shown below:
category_mapping = {
'Political':1,
'Economy':2,
'Health':3,
'Sport':4,
'Culture':5,
'Technology':6,
'Art':7,
'Accidents':8
}
## Pre-training Settings and Results on TyDi QA Development Dataset ( Model in this card is highlighted in bold )
| Name | Type | Value | Verified |
|------------------|--------------|-------------|---------------|
| Accuracy | accuracy | 96.67% | true |
| F1_score | f1_score | 96.67% | true |
| BLEU | bleu | 96.23% | true |
| Loss | loss |0.57164502143| true |
# Example usage
```python
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline
from arabert.preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor(model_name="aubmindlab/bert-base-arabertv2")
model_name="Hezam/arabic-T5-news-classification-generation"
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)
text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك"
text_clean = arabert_prep.preprocess(text)
g=generation_pipeline(text_clean,
num_beams=10,
max_length=config.Generation_LEN,
top_p=0.9,
repetition_penalty = 3.0,
no_repeat_ngram_size = 3)[0]["generated_text"]
```
```bash
output:
``` |