--- language: - ar metrics: - Accuracy - F1_score - BLEU library_name: transformers pipeline_tag: text2text-generation tags: - Classification and Generation - Classification - Generation - ArabicT5 - Text Classification - Text2Text Generation widget: - text: >- خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك --- # ArabicT5: Classification and Generation of Arabic News - The model is under trial # The number in the generated text represents the category of the news, as shown below: category_mapping = { 'Political':1, 'Economy':2, 'Health':3, 'Sport':4, 'Culture':5, 'Technology':6, 'Art':7, 'Accidents':8 } ## Pre-training Settings and Results on TyDi QA Development Dataset ( Model in this card is highlighted in bold ) | Name | Type | Value | Verified | |------------------|--------------|-------------|---------------| | Accuracy | accuracy | 96.67% | true | | F1_score | f1_score | 96.67% | true | | BLEU | bleu | 96.23% | true | | Loss | loss |0.57164502143| true | # Example usage ```python from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline from arabert.preprocess import ArabertPreprocessor arabert_prep = ArabertPreprocessor(model_name="aubmindlab/bert-base-arabertv2") model_name="Hezam/arabic-T5-news-classification-generation" model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer) text = " خسارة مدوية لليفربول امام تولوز وفوز كبير لبيتيس، انتصار الفيولا واستون فيلا في دوري المؤتمر، والد لويس دياز حر، فوز انديانا على ميلووكي, انتصار للانترانيك" text_clean = arabert_prep.preprocess(text) g=generation_pipeline(text_clean, num_beams=10, max_length=config.Generation_LEN, top_p=0.9, repetition_penalty = 3.0, no_repeat_ngram_size = 3)[0]["generated_text"] ``` ```bash output: ```