Hezam commited on
Commit
049fe98
1 Parent(s): 9964309

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -22
README.md CHANGED
@@ -20,27 +20,9 @@ widget:
20
 
21
  # # Arabic text classification using deep learning (ArabicT5)
22
 
23
- - SANAD: Single-label Arabic News Articles Dataset for automatic text categorization
24
-
25
- - Paper
26
- [https://www.researchgate.net/publication/333605992_SANAD_Single-Label_Arabic_News_Articles_Dataset_for_Automatic_Text_Categorization]
27
-
28
- -Dataset
29
- [https://data.mendeley.com/datasets/57zpx667y9/2]
30
-
31
- # # Their experiment'
32
-
33
- [https://www.sciencedirect.com/science/article/abs/pii/S0306457319303413]
34
-
35
- "Our experimental results showed that all models did very well on SANAD corpus with a minimum accuracy of 93.43%, achieved by CGRU, and top performance of 95.81%, achieved by HANGRU."
36
- | Model | Accuracy |
37
- | :---------------------: | :---------------------: |
38
- | CGRU | 93.43% |
39
- | HANGRU | 95.81% |
40
-
41
- # # Our experiment
42
 
43
- # # The category mapping
44
  category_mapping = {
45
 
46
  'Politics':1,
@@ -52,7 +34,7 @@ widget:
52
  'Religion':7
53
  }
54
 
55
- # # Training parameters
56
 
57
  | | |
58
  | :-------------------: | :-----------:|
@@ -65,7 +47,7 @@ widget:
65
  | Epoch | `2` |
66
  | | |
67
 
68
- # # Results
69
 
70
  | | |
71
  | :---------------------: | :-----------: |
@@ -73,6 +55,27 @@ widget:
73
  | Accuracy | `96.49%` |
74
  | BLeU | `96.49%` |
75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  # # Example usage
77
  ```python
78
  from transformers import T5ForConditionalGeneration, T5Tokenizer
 
20
 
21
  # # Arabic text classification using deep learning (ArabicT5)
22
 
23
+ # # Our experiment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ - The category mapping
26
  category_mapping = {
27
 
28
  'Politics':1,
 
34
  'Religion':7
35
  }
36
 
37
+ - Training parameters
38
 
39
  | | |
40
  | :-------------------: | :-----------:|
 
47
  | Epoch | `2` |
48
  | | |
49
 
50
+ - Results
51
 
52
  | | |
53
  | :---------------------: | :-----------: |
 
55
  | Accuracy | `96.49%` |
56
  | BLeU | `96.49%` |
57
 
58
+ # # SANAD: Single-label Arabic News Articles Dataset for automatic text categorization
59
+
60
+ - Paper
61
+ [https://www.researchgate.net/publication/333605992_SANAD_Single-Label_Arabic_News_Articles_Dataset_for_Automatic_Text_Categorization]
62
+
63
+ - Dataset
64
+ [https://data.mendeley.com/datasets/57zpx667y9/2]
65
+
66
+ # # Arabic text classification using deep learning models
67
+
68
+ - Paper
69
+ [https://www.sciencedirect.com/science/article/abs/pii/S0306457319303413]
70
+
71
+ - Their experiment'
72
+ "Our experimental results showed that all models did very well on SANAD corpus with a minimum accuracy of 93.43%, achieved by CGRU, and top performance of 95.81%, achieved by HANGRU."
73
+ | Model | Accuracy |
74
+ | :---------------------: | :---------------------: |
75
+ | CGRU | 93.43% |
76
+ | HANGRU | 95.81% |
77
+
78
+
79
  # # Example usage
80
  ```python
81
  from transformers import T5ForConditionalGeneration, T5Tokenizer