Update README.md
Browse files
README.md
CHANGED
@@ -20,27 +20,9 @@ widget:
|
|
20 |
|
21 |
# # Arabic text classification using deep learning (ArabicT5)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
- Paper
|
26 |
-
[https://www.researchgate.net/publication/333605992_SANAD_Single-Label_Arabic_News_Articles_Dataset_for_Automatic_Text_Categorization]
|
27 |
-
|
28 |
-
-Dataset
|
29 |
-
[https://data.mendeley.com/datasets/57zpx667y9/2]
|
30 |
-
|
31 |
-
# # Their experiment'
|
32 |
-
|
33 |
-
[https://www.sciencedirect.com/science/article/abs/pii/S0306457319303413]
|
34 |
-
|
35 |
-
"Our experimental results showed that all models did very well on SANAD corpus with a minimum accuracy of 93.43%, achieved by CGRU, and top performance of 95.81%, achieved by HANGRU."
|
36 |
-
| Model | Accuracy |
|
37 |
-
| :---------------------: | :---------------------: |
|
38 |
-
| CGRU | 93.43% |
|
39 |
-
| HANGRU | 95.81% |
|
40 |
-
|
41 |
-
# # Our experiment
|
42 |
|
43 |
-
|
44 |
category_mapping = {
|
45 |
|
46 |
'Politics':1,
|
@@ -52,7 +34,7 @@ widget:
|
|
52 |
'Religion':7
|
53 |
}
|
54 |
|
55 |
-
|
56 |
|
57 |
| | |
|
58 |
| :-------------------: | :-----------:|
|
@@ -65,7 +47,7 @@ widget:
|
|
65 |
| Epoch | `2` |
|
66 |
| | |
|
67 |
|
68 |
-
|
69 |
|
70 |
| | |
|
71 |
| :---------------------: | :-----------: |
|
@@ -73,6 +55,27 @@ widget:
|
|
73 |
| Accuracy | `96.49%` |
|
74 |
| BLeU | `96.49%` |
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# # Example usage
|
77 |
```python
|
78 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
|
|
20 |
|
21 |
# # Arabic text classification using deep learning (ArabicT5)
|
22 |
|
23 |
+
# # Our experiment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
- The category mapping
|
26 |
category_mapping = {
|
27 |
|
28 |
'Politics':1,
|
|
|
34 |
'Religion':7
|
35 |
}
|
36 |
|
37 |
+
- Training parameters
|
38 |
|
39 |
| | |
|
40 |
| :-------------------: | :-----------:|
|
|
|
47 |
| Epoch | `2` |
|
48 |
| | |
|
49 |
|
50 |
+
- Results
|
51 |
|
52 |
| | |
|
53 |
| :---------------------: | :-----------: |
|
|
|
55 |
| Accuracy | `96.49%` |
|
56 |
| BLeU | `96.49%` |
|
57 |
|
58 |
+
# # SANAD: Single-label Arabic News Articles Dataset for automatic text categorization
|
59 |
+
|
60 |
+
- Paper
|
61 |
+
[https://www.researchgate.net/publication/333605992_SANAD_Single-Label_Arabic_News_Articles_Dataset_for_Automatic_Text_Categorization]
|
62 |
+
|
63 |
+
- Dataset
|
64 |
+
[https://data.mendeley.com/datasets/57zpx667y9/2]
|
65 |
+
|
66 |
+
# # Arabic text classification using deep learning models
|
67 |
+
|
68 |
+
- Paper
|
69 |
+
[https://www.sciencedirect.com/science/article/abs/pii/S0306457319303413]
|
70 |
+
|
71 |
+
- Their experiment'
|
72 |
+
"Our experimental results showed that all models did very well on SANAD corpus with a minimum accuracy of 93.43%, achieved by CGRU, and top performance of 95.81%, achieved by HANGRU."
|
73 |
+
| Model | Accuracy |
|
74 |
+
| :---------------------: | :---------------------: |
|
75 |
+
| CGRU | 93.43% |
|
76 |
+
| HANGRU | 95.81% |
|
77 |
+
|
78 |
+
|
79 |
# # Example usage
|
80 |
```python
|
81 |
from transformers import T5ForConditionalGeneration, T5Tokenizer
|