"ref:https://huggingface.co/docs/transformers/custom_models#sharing-custom-models" from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from configuration_resnet import ResnetConfig from transformers import AutoConfig, AutoModel, AutoModelForImageClassification import torch import timm BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor): return self.model.forward_features(tensor) class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} # create a resnet50d config and save it resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d_config.save_pretrained("/root/code/Huggingface_Toturials/resnet_model/custom-resnet") # reload your config with the from_pretrained method resnet50d_config = ResnetConfig.from_pretrained("/root/code/Huggingface_Toturials/resnet_model/custom-resnet") # creat a model resnet50d = ResnetModelForImageClassification(resnet50d_config) # use the pretrained version of the resnet50d pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) # add config and model to the auto classes AutoConfig.register("resnet_demo", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification)