Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,56 @@
|
|
1 |
---
|
2 |
-
license: cc-by-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
---
|
3 |
+
|
4 |
+
# A2T Entailment model
|
5 |
+
|
6 |
+
**Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers).
|
7 |
+
|
8 |
+
|
9 |
+
Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format.
|
10 |
+
|
11 |
+
For more information please, take a look to the [Ask2Transformers]() library or the following published papers:
|
12 |
+
|
13 |
+
- [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/)
|
14 |
+
- [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]()
|
15 |
+
|
16 |
+
## About the model
|
17 |
+
|
18 |
+
The model name describes the configuration used for training as follows:
|
19 |
+
|
20 |
+
<!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ -->
|
21 |
+
|
22 |
+
<h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3>
|
23 |
+
|
24 |
+
|
25 |
+
- `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>.
|
26 |
+
- `NLI_datasets`: The NLI datasets used for pivot training.
|
27 |
+
- `S`: Standford Natural Language Inference (SNLI) dataset.
|
28 |
+
- `M`: Multi Natural Language Inference (MNLI) dataset.
|
29 |
+
- `F`: Fever-nli dataset.
|
30 |
+
- `A`: Adversarial Natural Language Inference (ANLI) dataset.
|
31 |
+
- `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg.
|
32 |
+
|
33 |
+
Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results.
|
34 |
+
|
35 |
+
## Cite
|
36 |
+
|
37 |
+
If you use this model, consider citing the following publications:
|
38 |
+
|
39 |
+
```bibtex
|
40 |
+
@inproceedings{sainz-etal-2021-label,
|
41 |
+
title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction",
|
42 |
+
author = "Sainz, Oscar and
|
43 |
+
Lopez de Lacalle, Oier and
|
44 |
+
Labaka, Gorka and
|
45 |
+
Barrena, Ander and
|
46 |
+
Agirre, Eneko",
|
47 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
|
48 |
+
month = nov,
|
49 |
+
year = "2021",
|
50 |
+
address = "Online and Punta Cana, Dominican Republic",
|
51 |
+
publisher = "Association for Computational Linguistics",
|
52 |
+
url = "https://aclanthology.org/2021.emnlp-main.92",
|
53 |
+
doi = "10.18653/v1/2021.emnlp-main.92",
|
54 |
+
pages = "1199--1212",
|
55 |
+
}
|
56 |
+
```
|