First model version
Browse files- README.md +61 -1
- added_tokens.json +1 -0
- config.json +37 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: zero-shot-classification
|
3 |
+
datasets:
|
4 |
+
- snli
|
5 |
+
- anli
|
6 |
+
- multi_nli
|
7 |
+
- multi_nli_mismatch
|
8 |
+
- fever
|
9 |
---
|
10 |
+
|
11 |
+
# A2T Entailment model
|
12 |
+
|
13 |
+
**Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers).
|
14 |
+
|
15 |
+
|
16 |
+
Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format.
|
17 |
+
|
18 |
+
For more information please, take a look to the [Ask2Transformers]() library or the following published papers:
|
19 |
+
|
20 |
+
- [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/)
|
21 |
+
- [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]()
|
22 |
+
|
23 |
+
## About the model
|
24 |
+
|
25 |
+
The model name describes the configuration used for training as follows:
|
26 |
+
|
27 |
+
<!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ -->
|
28 |
+
|
29 |
+
<h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3>
|
30 |
+
|
31 |
+
|
32 |
+
- `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>.
|
33 |
+
- `NLI_datasets`: The NLI datasets used for pivot training.
|
34 |
+
- `S`: Standford Natural Language Inference (SNLI) dataset.
|
35 |
+
- `M`: Multi Natural Language Inference (MNLI) dataset.
|
36 |
+
- `F`: Fever-nli dataset.
|
37 |
+
- `A`: Adversarial Natural Language Inference (ANLI) dataset.
|
38 |
+
- `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg.
|
39 |
+
|
40 |
+
Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results.
|
41 |
+
|
42 |
+
## Cite
|
43 |
+
|
44 |
+
If you use this model, consider citing the following publications:
|
45 |
+
|
46 |
+
```bibtex
|
47 |
+
@inproceedings{sainz-etal-2021-label,
|
48 |
+
title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction",
|
49 |
+
author = "Sainz, Oscar and
|
50 |
+
Lopez de Lacalle, Oier and
|
51 |
+
Labaka, Gorka and
|
52 |
+
Barrena, Ander and
|
53 |
+
Agirre, Eneko",
|
54 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
|
55 |
+
month = nov,
|
56 |
+
year = "2021",
|
57 |
+
address = "Online and Punta Cana, Dominican Republic",
|
58 |
+
publisher = "Association for Computational Linguistics",
|
59 |
+
url = "https://aclanthology.org/2021.emnlp-main.92",
|
60 |
+
doi = "10.18653/v1/2021.emnlp-main.92",
|
61 |
+
pages = "1199--1212",
|
62 |
+
}
|
63 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<trg>": 50265}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"RobertaForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "entailment",
|
14 |
+
"1": "neutral",
|
15 |
+
"2": "contradiction"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 4096,
|
19 |
+
"label2id": {
|
20 |
+
"contradiction": 2,
|
21 |
+
"entailment": 0,
|
22 |
+
"neutral": 1
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-05,
|
25 |
+
"max_position_embeddings": 514,
|
26 |
+
"model_type": "roberta",
|
27 |
+
"num_attention_heads": 16,
|
28 |
+
"num_hidden_layers": 24,
|
29 |
+
"pad_token_id": 1,
|
30 |
+
"position_embedding_type": "absolute",
|
31 |
+
"problem_type": "single_label_classification",
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.9.0.dev0",
|
34 |
+
"type_vocab_size": 1,
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 50266
|
37 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1476954a71414fdbf716fdcc57fd67728cc416228a63d16cfa02b3538864113d
|
3 |
+
size 1421624141
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": "/sc01a4/users/osainz006/.cache/huggingface/transformers/248872fd529229b514ff0a34d7cf36cb19ac435ad80a0d104e69e6079104c687.cb2244924ab24d706b02fd7fcedaea4531566537687a539ebb94db511fd122a0", "name_or_path": "/gscratch3/users/osainz006/A2T/ACE/english-e/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli_2_5_5_42_25_4e-6_0.01_f1-score_oscar", "tokenizer_class": "RobertaTokenizer"}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|