juletxara commited on
Commit
4bedb9d
1 Parent(s): 78b0f28

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: alpaca-lora-30b-en-pt-es-ca-eu-gl-at
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # alpaca-lora-30b-en-pt-es-ca-eu-gl-at
14
+
15
+ This model is a fine-tuned version of [decapoda-research/llama-30b-hf](https://huggingface.co/decapoda-research/llama-30b-hf) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.9088
18
+
19
+ ## Model description
20
+
21
+ More information needed
22
+
23
+ ## Intended uses & limitations
24
+
25
+ More information needed
26
+
27
+ ## Training and evaluation data
28
+
29
+ More information needed
30
+
31
+ ## Training procedure
32
+
33
+ ### Training hyperparameters
34
+
35
+ The following hyperparameters were used during training:
36
+ - learning_rate: 0.0003
37
+ - train_batch_size: 6
38
+ - eval_batch_size: 6
39
+ - seed: 42
40
+ - distributed_type: multi-GPU
41
+ - gradient_accumulation_steps: 21
42
+ - total_train_batch_size: 126
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_ratio: 0.03
46
+ - num_epochs: 1
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 1.1695 | 0.04 | 100 | 1.1716 |
54
+ | 1.1211 | 0.07 | 200 | 1.0964 |
55
+ | 1.0591 | 0.11 | 300 | 1.0590 |
56
+ | 1.0234 | 0.14 | 400 | 1.0341 |
57
+ | 1.0345 | 0.18 | 500 | 1.0165 |
58
+ | 0.9932 | 0.22 | 600 | 1.0024 |
59
+ | 0.9948 | 0.25 | 700 | 0.9895 |
60
+ | 1.01 | 0.29 | 800 | 0.9794 |
61
+ | 0.9488 | 0.32 | 900 | 0.9708 |
62
+ | 0.9518 | 0.36 | 1000 | 0.9627 |
63
+ | 0.9463 | 0.4 | 1100 | 0.9557 |
64
+ | 0.956 | 0.43 | 1200 | 0.9498 |
65
+ | 0.9521 | 0.47 | 1300 | 0.9437 |
66
+ | 0.9345 | 0.51 | 1400 | 0.9385 |
67
+ | 0.9469 | 0.54 | 1500 | 0.9337 |
68
+ | 0.9466 | 0.58 | 1600 | 0.9297 |
69
+ | 0.9403 | 0.61 | 1700 | 0.9257 |
70
+ | 0.9179 | 0.65 | 1800 | 0.9219 |
71
+ | 0.9468 | 0.69 | 1900 | 0.9190 |
72
+ | 0.9173 | 0.72 | 2000 | 0.9163 |
73
+ | 0.9172 | 0.76 | 2100 | 0.9142 |
74
+ | 0.9351 | 0.79 | 2200 | 0.9124 |
75
+ | 0.9238 | 0.83 | 2300 | 0.9110 |
76
+ | 0.9057 | 0.87 | 2400 | 0.9099 |
77
+ | 0.9309 | 0.9 | 2500 | 0.9093 |
78
+ | 0.8893 | 0.94 | 2600 | 0.9090 |
79
+ | 0.9095 | 0.97 | 2700 | 0.9088 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.28.0.dev0
85
+ - Pytorch 2.0.0+cu117
86
+ - Datasets 2.10.1
87
+ - Tokenizers 0.13.2