Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- HiTZ/AbstRCT-ES
|
4 |
+
language:
|
5 |
+
- es
|
6 |
+
- en
|
7 |
+
pipeline_tag: token-classification
|
8 |
+
---
|
9 |
+
This model is a fine-tuned version of mBERT for the argument mining task using AbstRCT data in English and Spanish.
|
10 |
+
The dataset consists of abstracts of 5 disease types for argument component detection and argument relation classification:
|
11 |
+
|
12 |
+
- `neoplasm`: 350 train, 100 dev and 50 test abstracts
|
13 |
+
- `glaucoma_test`: 100 abstracts
|
14 |
+
- `mixed_test`: 100 abstracts (20 on glaucoma, 20 on neoplasm, 20 on diabetes, 20 on hypertension, 20 on hepatitis)
|
15 |
+
|
16 |
+
The results achieved for each test set:
|
17 |
+
|
18 |
+
Test | F1-macro | F1-Claim | F1-Premise
|
19 |
+
--|-------|-------|-------
|
20 |
+
Neoplasm | 82.36 | 74.89 | 89.07
|
21 |
+
Glaucoma | 80.52 | 75.22 | 84.86
|
22 |
+
Mixed | 81.69 | 75.06 | 88.57
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import AutoModelForSequenceClassification
|
26 |
+
|
27 |
+
model = AutoModelForSequenceClassification.from_pretrained('HiTZ/mbert-argument-mining-es')
|
28 |
+
```
|
29 |
+
|
30 |
+
|