anaryegen commited on
Commit
d89bb2d
·
verified ·
1 Parent(s): 042a36c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -0
README.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - HiTZ/AbstRCT-ES
4
+ language:
5
+ - es
6
+ - en
7
+ pipeline_tag: token-classification
8
+ ---
9
+ This model is a fine-tuned version of mBERT for the argument mining task using AbstRCT data in English and Spanish.
10
+ The dataset consists of abstracts of 5 disease types for argument component detection and argument relation classification:
11
+
12
+ - `neoplasm`: 350 train, 100 dev and 50 test abstracts
13
+ - `glaucoma_test`: 100 abstracts
14
+ - `mixed_test`: 100 abstracts (20 on glaucoma, 20 on neoplasm, 20 on diabetes, 20 on hypertension, 20 on hepatitis)
15
+
16
+ The results achieved for each test set:
17
+
18
+ Test | F1-macro | F1-Claim | F1-Premise
19
+ --|-------|-------|-------
20
+ Neoplasm | 82.36 | 74.89 | 89.07
21
+ Glaucoma | 80.52 | 75.22 | 84.86
22
+ Mixed | 81.69 | 75.06 | 88.57
23
+
24
+ ```python
25
+ from transformers import AutoModelForSequenceClassification
26
+
27
+ model = AutoModelForSequenceClassification.from_pretrained('HiTZ/mbert-argument-mining-es')
28
+ ```
29
+
30
+