--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9349593495934959 - name: Recall type: recall value: 0.9468562874251497 - name: F1 type: f1 value: 0.9408702119747119 - name: Accuracy type: accuracy value: 0.9490662139219015 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2730 - Precision: 0.9350 - Recall: 0.9469 - F1: 0.9409 - Accuracy: 0.9491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 1.0147 | 0.7119 | 0.7807 | 0.7447 | 0.7963 | | 1.3916 | 8.33 | 500 | 0.5211 | 0.8428 | 0.8705 | 0.8564 | 0.8786 | | 1.3916 | 12.5 | 750 | 0.3842 | 0.8961 | 0.9169 | 0.9064 | 0.9181 | | 0.3265 | 16.67 | 1000 | 0.3158 | 0.9225 | 0.9349 | 0.9286 | 0.9393 | | 0.3265 | 20.83 | 1250 | 0.2874 | 0.9162 | 0.9334 | 0.9247 | 0.9414 | | 0.139 | 25.0 | 1500 | 0.2738 | 0.9255 | 0.9394 | 0.9324 | 0.9461 | | 0.139 | 29.17 | 1750 | 0.2774 | 0.9354 | 0.9431 | 0.9392 | 0.9491 | | 0.0798 | 33.33 | 2000 | 0.2695 | 0.9342 | 0.9461 | 0.9401 | 0.9508 | | 0.0798 | 37.5 | 2250 | 0.2759 | 0.9356 | 0.9461 | 0.9408 | 0.9495 | | 0.0592 | 41.67 | 2500 | 0.2730 | 0.9350 | 0.9469 | 0.9409 | 0.9491 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3