--- license: gemma library_name: peft tags: - trl - reward-trainer - generated_from_trainer base_model: google/gemma-2b metrics: - accuracy model-index: - name: RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4 results: [] --- # RM-TLDR_human_loraR64_20000_gemma2b_lr5e-05_bs2_g4 This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6609 - Accuracy: 0.657 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5488 | 1.0 | 2250 | 0.6267 | 0.65 | | 0.4845 | 2.0 | 4500 | 0.6609 | 0.657 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2