File size: 1,671 Bytes
b027a06 5bca5a7 b027a06 e839b99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: EleutherAI/gpt-j-6b
model-index:
- name: trl_rm_tldr_gptj
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trl_rm_tldr_gptj
This model is a fine-tuned version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) on the TL;DR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6624
- Accuracy: 0.6857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.41e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5633 | 1.0 | 22660 | 0.6624 | 0.6857 |
### Framework versions
- PEFT 0.7.1.dev0
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.0
### BibTex Citation
If you would like to cite our paper when using the model, please use
```
@article{sun2024supervised,
title={Supervised Fine-Tuning as Inverse Reinforcement Learning},
author={Sun, Hao},
journal={arXiv preprint arXiv:2403.12017},
year={2024}
}
``` |