File size: 3,455 Bytes
9436add c100af2 9436add 0690452 c100af2 0690452 c100af2 0690452 9436add 0690452 9436add c100af2 9436add c100af2 9436add c100af2 9436add c100af2 0690452 9436add c100af2 9436add c100af2 9436add |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: beit-base-patch16-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7333333333333333
- name: Precision
type: precision
value: 0.708216298040535
- name: Recall
type: recall
value: 0.7333333333333333
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# beit-base-patch16-224
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5490
- Accuracy: 0.7333
- Precision: 0.7082
- Recall: 0.7333
- F1 Score: 0.7050
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| No log | 1.0 | 4 | 0.6369 | 0.725 | 0.5256 | 0.725 | 0.6094 |
| No log | 2.0 | 8 | 0.6192 | 0.7458 | 0.7215 | 0.7458 | 0.6907 |
| No log | 3.0 | 12 | 0.5699 | 0.725 | 0.5256 | 0.725 | 0.6094 |
| 0.727 | 4.0 | 16 | 0.6237 | 0.6792 | 0.6716 | 0.6792 | 0.6751 |
| 0.727 | 5.0 | 20 | 0.5533 | 0.7292 | 0.8028 | 0.7292 | 0.6191 |
| 0.727 | 6.0 | 24 | 0.5601 | 0.7375 | 0.7200 | 0.7375 | 0.6562 |
| 0.727 | 7.0 | 28 | 0.5901 | 0.7167 | 0.6944 | 0.7167 | 0.7013 |
| 0.5968 | 8.0 | 32 | 0.5543 | 0.7375 | 0.7081 | 0.7375 | 0.7080 |
| 0.5968 | 9.0 | 36 | 0.5780 | 0.7208 | 0.7095 | 0.7208 | 0.7141 |
| 0.5968 | 10.0 | 40 | 0.5389 | 0.7375 | 0.7049 | 0.7375 | 0.6990 |
| 0.5968 | 11.0 | 44 | 0.5438 | 0.7542 | 0.7306 | 0.7542 | 0.7238 |
| 0.5631 | 12.0 | 48 | 0.5426 | 0.7458 | 0.7187 | 0.7458 | 0.7145 |
| 0.5631 | 13.0 | 52 | 0.5383 | 0.7458 | 0.7187 | 0.7458 | 0.7145 |
| 0.5631 | 14.0 | 56 | 0.5432 | 0.7458 | 0.7239 | 0.7458 | 0.7269 |
| 0.541 | 15.0 | 60 | 0.5453 | 0.7417 | 0.7212 | 0.7417 | 0.7256 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|