HorcruxNo13
commited on
Commit
•
17849c0
1
Parent(s):
cc749eb
Model save
Browse files- README.md +40 -25
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -24,13 +24,13 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Accuracy: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- F1 Score: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -72,32 +72,47 @@ The following hyperparameters were used during training:
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 4 | 0.
|
82 |
-
| No log | 2.0 | 8 | 0.
|
83 |
-
| No log | 3.0 | 12 | 0.
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
### Framework versions
|
99 |
|
100 |
-
- Transformers 4.33.
|
101 |
- Pytorch 2.0.1+cu118
|
102 |
- Datasets 2.14.5
|
103 |
- Tokenizers 0.13.3
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.85
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.8455590062111802
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.85
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.4871
|
44 |
+
- Accuracy: 0.85
|
45 |
+
- Precision: 0.8456
|
46 |
+
- Recall: 0.85
|
47 |
+
- F1 Score: 0.8464
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
+
- num_epochs: 30
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 4 | 0.5784 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
82 |
+
| No log | 2.0 | 8 | 0.5813 | 0.7375 | 0.7030 | 0.7375 | 0.6441 |
|
83 |
+
| No log | 3.0 | 12 | 0.5486 | 0.7417 | 0.7297 | 0.7417 | 0.7343 |
|
84 |
+
| No log | 4.0 | 16 | 0.5394 | 0.7542 | 0.7333 | 0.7542 | 0.7370 |
|
85 |
+
| No log | 5.0 | 20 | 0.5067 | 0.775 | 0.7658 | 0.775 | 0.7321 |
|
86 |
+
| No log | 6.0 | 24 | 0.5542 | 0.7958 | 0.7966 | 0.7958 | 0.7613 |
|
87 |
+
| No log | 7.0 | 28 | 0.4753 | 0.7958 | 0.7834 | 0.7958 | 0.7758 |
|
88 |
+
| 0.5325 | 8.0 | 32 | 0.5265 | 0.7792 | 0.7661 | 0.7792 | 0.7448 |
|
89 |
+
| 0.5325 | 9.0 | 36 | 0.4789 | 0.8208 | 0.8134 | 0.8208 | 0.8067 |
|
90 |
+
| 0.5325 | 10.0 | 40 | 0.4939 | 0.7875 | 0.7932 | 0.7875 | 0.7900 |
|
91 |
+
| 0.5325 | 11.0 | 44 | 0.4917 | 0.8042 | 0.8032 | 0.8042 | 0.8037 |
|
92 |
+
| 0.5325 | 12.0 | 48 | 0.5001 | 0.8083 | 0.8019 | 0.8083 | 0.8041 |
|
93 |
+
| 0.5325 | 13.0 | 52 | 0.4742 | 0.8 | 0.7897 | 0.8 | 0.7915 |
|
94 |
+
| 0.5325 | 14.0 | 56 | 0.5439 | 0.7875 | 0.8037 | 0.7875 | 0.7932 |
|
95 |
+
| 0.3381 | 15.0 | 60 | 0.5436 | 0.8333 | 0.8265 | 0.8333 | 0.8263 |
|
96 |
+
| 0.3381 | 16.0 | 64 | 0.4989 | 0.8375 | 0.8312 | 0.8375 | 0.8288 |
|
97 |
+
| 0.3381 | 17.0 | 68 | 0.4949 | 0.8333 | 0.8282 | 0.8333 | 0.8296 |
|
98 |
+
| 0.3381 | 18.0 | 72 | 0.4709 | 0.8292 | 0.8283 | 0.8292 | 0.8287 |
|
99 |
+
| 0.3381 | 19.0 | 76 | 0.4680 | 0.8167 | 0.8133 | 0.8167 | 0.8147 |
|
100 |
+
| 0.3381 | 20.0 | 80 | 0.5053 | 0.8417 | 0.8362 | 0.8417 | 0.8371 |
|
101 |
+
| 0.3381 | 21.0 | 84 | 0.5480 | 0.8458 | 0.8459 | 0.8458 | 0.8322 |
|
102 |
+
| 0.3381 | 22.0 | 88 | 0.4548 | 0.8542 | 0.8512 | 0.8542 | 0.8522 |
|
103 |
+
| 0.2076 | 23.0 | 92 | 0.4891 | 0.8458 | 0.8407 | 0.8458 | 0.8376 |
|
104 |
+
| 0.2076 | 24.0 | 96 | 0.4981 | 0.85 | 0.8486 | 0.85 | 0.8492 |
|
105 |
+
| 0.2076 | 25.0 | 100 | 0.4993 | 0.8458 | 0.8426 | 0.8458 | 0.8438 |
|
106 |
+
| 0.2076 | 26.0 | 104 | 0.5026 | 0.8542 | 0.8503 | 0.8542 | 0.8514 |
|
107 |
+
| 0.2076 | 27.0 | 108 | 0.4944 | 0.8542 | 0.8522 | 0.8542 | 0.8530 |
|
108 |
+
| 0.2076 | 28.0 | 112 | 0.4821 | 0.8542 | 0.8549 | 0.8542 | 0.8545 |
|
109 |
+
| 0.2076 | 29.0 | 116 | 0.4714 | 0.8583 | 0.8559 | 0.8583 | 0.8568 |
|
110 |
+
| 0.138 | 30.0 | 120 | 0.4705 | 0.8583 | 0.8559 | 0.8583 | 0.8568 |
|
111 |
|
112 |
|
113 |
### Framework versions
|
114 |
|
115 |
+
- Transformers 4.33.3
|
116 |
- Pytorch 2.0.1+cu118
|
117 |
- Datasets 2.14.5
|
118 |
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343130249
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7c7d1375759ad1f9f785fbcea6fed4f90ac1d33f690f27c0c4cdb53c1a640e3
|
3 |
size 343130249
|