--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: beit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7333333333333333 - name: Precision type: precision value: 0.708216298040535 - name: Recall type: recall value: 0.7333333333333333 --- # beit-base-patch16-224 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5490 - Accuracy: 0.7333 - Precision: 0.7082 - Recall: 0.7333 - F1 Score: 0.7050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.6369 | 0.725 | 0.5256 | 0.725 | 0.6094 | | No log | 2.0 | 8 | 0.6192 | 0.7458 | 0.7215 | 0.7458 | 0.6907 | | No log | 3.0 | 12 | 0.5699 | 0.725 | 0.5256 | 0.725 | 0.6094 | | 0.727 | 4.0 | 16 | 0.6237 | 0.6792 | 0.6716 | 0.6792 | 0.6751 | | 0.727 | 5.0 | 20 | 0.5533 | 0.7292 | 0.8028 | 0.7292 | 0.6191 | | 0.727 | 6.0 | 24 | 0.5601 | 0.7375 | 0.7200 | 0.7375 | 0.6562 | | 0.727 | 7.0 | 28 | 0.5901 | 0.7167 | 0.6944 | 0.7167 | 0.7013 | | 0.5968 | 8.0 | 32 | 0.5543 | 0.7375 | 0.7081 | 0.7375 | 0.7080 | | 0.5968 | 9.0 | 36 | 0.5780 | 0.7208 | 0.7095 | 0.7208 | 0.7141 | | 0.5968 | 10.0 | 40 | 0.5389 | 0.7375 | 0.7049 | 0.7375 | 0.6990 | | 0.5968 | 11.0 | 44 | 0.5438 | 0.7542 | 0.7306 | 0.7542 | 0.7238 | | 0.5631 | 12.0 | 48 | 0.5426 | 0.7458 | 0.7187 | 0.7458 | 0.7145 | | 0.5631 | 13.0 | 52 | 0.5383 | 0.7458 | 0.7187 | 0.7458 | 0.7145 | | 0.5631 | 14.0 | 56 | 0.5432 | 0.7458 | 0.7239 | 0.7458 | 0.7269 | | 0.541 | 15.0 | 60 | 0.5453 | 0.7417 | 0.7212 | 0.7417 | 0.7256 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3