--- license: apache-2.0 base_model: google/bit-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: bit-50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.73 --- # bit-50 This model is a fine-tuned version of [google/bit-50](https://huggingface.co/google/bit-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5768 - Accuracy: 0.73 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 0.8910 | 0.3625 | | 4.9941 | 2.0 | 16 | 0.5701 | 0.7333 | | 0.6029 | 3.0 | 24 | 0.5637 | 0.7333 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3