--- base_model: microsoft/dit-base-finetuned-rvlcdip tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: dit-base-finetuned-rvlcdip results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.87 - name: Precision type: precision value: 0.7623411371237458 - name: Recall type: recall value: 0.87 --- # dit-base-finetuned-rvlcdip This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5940 - Accuracy: 0.87 - Precision: 0.7623 - Recall: 0.87 - F1 Score: 0.8126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.6006 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | No log | 2.0 | 8 | 0.5169 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | No log | 3.0 | 12 | 0.4027 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.5427 | 4.0 | 16 | 0.3865 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.5427 | 5.0 | 20 | 0.3894 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.5427 | 6.0 | 24 | 0.3729 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.5427 | 7.0 | 28 | 0.3707 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4458 | 8.0 | 32 | 0.3790 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4458 | 9.0 | 36 | 0.3504 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4458 | 10.0 | 40 | 0.3356 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4458 | 11.0 | 44 | 0.4082 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4369 | 12.0 | 48 | 0.3455 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4369 | 13.0 | 52 | 0.3074 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4369 | 14.0 | 56 | 0.3097 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4109 | 15.0 | 60 | 0.3173 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3