HorcruxNo13 commited on
Commit
85ec499
·
1 Parent(s): af9390f

Model save

Browse files
Files changed (2) hide show
  1. README.md +59 -39
  2. pytorch_model.bin +1 -1
README.md CHANGED
@@ -24,13 +24,13 @@ model-index:
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
- value: 0.78
28
  - name: Precision
29
  type: precision
30
- value: 0.781535758027584
31
  - name: Recall
32
  type: recall
33
- value: 0.78
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.4819
44
- - Accuracy: 0.78
45
- - Precision: 0.7815
46
- - Recall: 0.78
47
- - F1 Score: 0.7807
48
 
49
  ## Model description
50
 
@@ -72,42 +72,62 @@ The following hyperparameters were used during training:
72
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
  - lr_scheduler_type: linear
74
  - lr_scheduler_warmup_ratio: 0.1
75
- - num_epochs: 30
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
81
- | No log | 1.0 | 4 | 0.5936 | 0.7292 | 0.8028 | 0.7292 | 0.6191 |
82
- | No log | 2.0 | 8 | 0.5702 | 0.7208 | 0.6468 | 0.7208 | 0.6283 |
83
- | No log | 3.0 | 12 | 0.5834 | 0.7125 | 0.6933 | 0.7125 | 0.7000 |
84
- | No log | 4.0 | 16 | 0.5471 | 0.7375 | 0.7034 | 0.7375 | 0.6846 |
85
- | No log | 5.0 | 20 | 0.5487 | 0.725 | 0.6938 | 0.725 | 0.6982 |
86
- | No log | 6.0 | 24 | 0.5253 | 0.7458 | 0.7182 | 0.7458 | 0.7116 |
87
- | No log | 7.0 | 28 | 0.5556 | 0.7417 | 0.7393 | 0.7417 | 0.7404 |
88
- | 0.5648 | 8.0 | 32 | 0.5183 | 0.7417 | 0.7155 | 0.7417 | 0.7165 |
89
- | 0.5648 | 9.0 | 36 | 0.5159 | 0.7667 | 0.7504 | 0.7667 | 0.7522 |
90
- | 0.5648 | 10.0 | 40 | 0.5137 | 0.7708 | 0.7579 | 0.7708 | 0.7609 |
91
- | 0.5648 | 11.0 | 44 | 0.5014 | 0.7833 | 0.7693 | 0.7833 | 0.7643 |
92
- | 0.5648 | 12.0 | 48 | 0.5157 | 0.75 | 0.7524 | 0.75 | 0.7511 |
93
- | 0.5648 | 13.0 | 52 | 0.5151 | 0.7417 | 0.7441 | 0.7417 | 0.7428 |
94
- | 0.5648 | 14.0 | 56 | 0.4908 | 0.7792 | 0.7653 | 0.7792 | 0.7663 |
95
- | 0.3814 | 15.0 | 60 | 0.4901 | 0.7833 | 0.7723 | 0.7833 | 0.7747 |
96
- | 0.3814 | 16.0 | 64 | 0.4993 | 0.7667 | 0.7689 | 0.7667 | 0.7677 |
97
- | 0.3814 | 17.0 | 68 | 0.4814 | 0.7792 | 0.7642 | 0.7792 | 0.7627 |
98
- | 0.3814 | 18.0 | 72 | 0.5165 | 0.7583 | 0.7796 | 0.7583 | 0.7656 |
99
- | 0.3814 | 19.0 | 76 | 0.4817 | 0.7958 | 0.7915 | 0.7958 | 0.7933 |
100
- | 0.3814 | 20.0 | 80 | 0.4748 | 0.8083 | 0.8036 | 0.8083 | 0.8054 |
101
- | 0.3814 | 21.0 | 84 | 0.4831 | 0.8042 | 0.8033 | 0.8042 | 0.8037 |
102
- | 0.3814 | 22.0 | 88 | 0.4795 | 0.8083 | 0.8013 | 0.8083 | 0.8032 |
103
- | 0.2354 | 23.0 | 92 | 0.5048 | 0.7708 | 0.7790 | 0.7708 | 0.7743 |
104
- | 0.2354 | 24.0 | 96 | 0.4838 | 0.8042 | 0.7974 | 0.8042 | 0.7995 |
105
- | 0.2354 | 25.0 | 100 | 0.4894 | 0.7833 | 0.7833 | 0.7833 | 0.7833 |
106
- | 0.2354 | 26.0 | 104 | 0.4852 | 0.8 | 0.7914 | 0.8 | 0.7933 |
107
- | 0.2354 | 27.0 | 108 | 0.4882 | 0.8 | 0.7982 | 0.8 | 0.7990 |
108
- | 0.2354 | 28.0 | 112 | 0.4932 | 0.7875 | 0.7929 | 0.7875 | 0.7898 |
109
- | 0.2354 | 29.0 | 116 | 0.4883 | 0.8083 | 0.8036 | 0.8083 | 0.8054 |
110
- | 0.1479 | 30.0 | 120 | 0.4886 | 0.8042 | 0.7974 | 0.8042 | 0.7995 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
 
113
  ### Framework versions
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.79
28
  - name: Precision
29
  type: precision
30
+ value: 0.7955164222268126
31
  - name: Recall
32
  type: recall
33
+ value: 0.79
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 0.6740
44
+ - Accuracy: 0.79
45
+ - Precision: 0.7955
46
+ - Recall: 0.79
47
+ - F1 Score: 0.7923
48
 
49
  ## Model description
50
 
 
72
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
  - lr_scheduler_type: linear
74
  - lr_scheduler_warmup_ratio: 0.1
75
+ - num_epochs: 50
76
 
77
  ### Training results
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
80
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
81
+ | No log | 1.0 | 4 | 0.5895 | 0.725 | 0.5256 | 0.725 | 0.6094 |
82
+ | No log | 2.0 | 8 | 0.5737 | 0.725 | 0.5256 | 0.725 | 0.6094 |
83
+ | No log | 3.0 | 12 | 0.5746 | 0.7333 | 0.6978 | 0.7333 | 0.6589 |
84
+ | No log | 4.0 | 16 | 0.5449 | 0.7292 | 0.7126 | 0.7292 | 0.6263 |
85
+ | No log | 5.0 | 20 | 0.5943 | 0.7208 | 0.7362 | 0.7208 | 0.7270 |
86
+ | No log | 6.0 | 24 | 0.5124 | 0.75 | 0.7360 | 0.75 | 0.6895 |
87
+ | No log | 7.0 | 28 | 0.6057 | 0.6625 | 0.7301 | 0.6625 | 0.6797 |
88
+ | No log | 8.0 | 32 | 0.5059 | 0.7583 | 0.7376 | 0.7583 | 0.7214 |
89
+ | No log | 9.0 | 36 | 0.5734 | 0.7125 | 0.7474 | 0.7125 | 0.7237 |
90
+ | No log | 10.0 | 40 | 0.5069 | 0.7458 | 0.7182 | 0.7458 | 0.7116 |
91
+ | No log | 11.0 | 44 | 0.5135 | 0.775 | 0.7659 | 0.775 | 0.7689 |
92
+ | No log | 12.0 | 48 | 0.4943 | 0.775 | 0.7601 | 0.775 | 0.7610 |
93
+ | 0.5275 | 13.0 | 52 | 0.5654 | 0.7458 | 0.7790 | 0.7458 | 0.7557 |
94
+ | 0.5275 | 14.0 | 56 | 0.5257 | 0.7625 | 0.7636 | 0.7625 | 0.7631 |
95
+ | 0.5275 | 15.0 | 60 | 0.5107 | 0.7875 | 0.7813 | 0.7875 | 0.7836 |
96
+ | 0.5275 | 16.0 | 64 | 0.5514 | 0.7333 | 0.7655 | 0.7333 | 0.7434 |
97
+ | 0.5275 | 17.0 | 68 | 0.5004 | 0.7833 | 0.7698 | 0.7833 | 0.7699 |
98
+ | 0.5275 | 18.0 | 72 | 0.5999 | 0.7125 | 0.7738 | 0.7125 | 0.7269 |
99
+ | 0.5275 | 19.0 | 76 | 0.4975 | 0.7667 | 0.7554 | 0.7667 | 0.7589 |
100
+ | 0.5275 | 20.0 | 80 | 0.5120 | 0.7917 | 0.7981 | 0.7917 | 0.7944 |
101
+ | 0.5275 | 21.0 | 84 | 0.5203 | 0.7833 | 0.7876 | 0.7833 | 0.7853 |
102
+ | 0.5275 | 22.0 | 88 | 0.5304 | 0.8042 | 0.8051 | 0.8042 | 0.8046 |
103
+ | 0.5275 | 23.0 | 92 | 0.5475 | 0.825 | 0.825 | 0.825 | 0.8250 |
104
+ | 0.5275 | 24.0 | 96 | 0.5757 | 0.7458 | 0.7661 | 0.7458 | 0.7531 |
105
+ | 0.2422 | 25.0 | 100 | 0.5669 | 0.7875 | 0.7829 | 0.7875 | 0.7848 |
106
+ | 0.2422 | 26.0 | 104 | 0.5489 | 0.7958 | 0.7931 | 0.7958 | 0.7943 |
107
+ | 0.2422 | 27.0 | 108 | 0.5372 | 0.8 | 0.7982 | 0.8 | 0.7990 |
108
+ | 0.2422 | 28.0 | 112 | 0.5500 | 0.8208 | 0.8160 | 0.8208 | 0.8176 |
109
+ | 0.2422 | 29.0 | 116 | 0.5682 | 0.8042 | 0.8033 | 0.8042 | 0.8037 |
110
+ | 0.2422 | 30.0 | 120 | 0.5899 | 0.8083 | 0.8050 | 0.8083 | 0.8064 |
111
+ | 0.2422 | 31.0 | 124 | 0.6217 | 0.8 | 0.8063 | 0.8 | 0.8026 |
112
+ | 0.2422 | 32.0 | 128 | 0.6063 | 0.8125 | 0.8053 | 0.8125 | 0.8068 |
113
+ | 0.2422 | 33.0 | 132 | 0.5843 | 0.8042 | 0.8033 | 0.8042 | 0.8037 |
114
+ | 0.2422 | 34.0 | 136 | 0.6020 | 0.8125 | 0.8073 | 0.8125 | 0.8091 |
115
+ | 0.2422 | 35.0 | 140 | 0.6180 | 0.8042 | 0.8092 | 0.8042 | 0.8063 |
116
+ | 0.2422 | 36.0 | 144 | 0.6287 | 0.8208 | 0.8171 | 0.8208 | 0.8186 |
117
+ | 0.2422 | 37.0 | 148 | 0.6231 | 0.825 | 0.8234 | 0.825 | 0.8242 |
118
+ | 0.0631 | 38.0 | 152 | 0.6260 | 0.8292 | 0.8300 | 0.8292 | 0.8296 |
119
+ | 0.0631 | 39.0 | 156 | 0.6278 | 0.8333 | 0.8294 | 0.8333 | 0.8308 |
120
+ | 0.0631 | 40.0 | 160 | 0.6325 | 0.8208 | 0.8200 | 0.8208 | 0.8204 |
121
+ | 0.0631 | 41.0 | 164 | 0.6370 | 0.8083 | 0.8013 | 0.8083 | 0.8032 |
122
+ | 0.0631 | 42.0 | 168 | 0.6371 | 0.8125 | 0.8100 | 0.8125 | 0.8111 |
123
+ | 0.0631 | 43.0 | 172 | 0.6404 | 0.8042 | 0.8016 | 0.8042 | 0.8027 |
124
+ | 0.0631 | 44.0 | 176 | 0.6640 | 0.8292 | 0.8227 | 0.8292 | 0.8229 |
125
+ | 0.0631 | 45.0 | 180 | 0.6636 | 0.8208 | 0.8185 | 0.8208 | 0.8195 |
126
+ | 0.0631 | 46.0 | 184 | 0.6826 | 0.8083 | 0.8122 | 0.8083 | 0.8100 |
127
+ | 0.0631 | 47.0 | 188 | 0.6756 | 0.8208 | 0.8185 | 0.8208 | 0.8195 |
128
+ | 0.0631 | 48.0 | 192 | 0.6695 | 0.8292 | 0.8246 | 0.8292 | 0.8261 |
129
+ | 0.0631 | 49.0 | 196 | 0.6669 | 0.825 | 0.8198 | 0.825 | 0.8213 |
130
+ | 0.0264 | 50.0 | 200 | 0.6658 | 0.825 | 0.8198 | 0.825 | 0.8213 |
131
 
132
 
133
  ### Framework versions
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:974109b356d2a1821a17105f4b0b51e0319ff471d0e5d8a01590a764f78c9d6a
3
  size 343268717
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f5b4cc01fac9b8bb3d6b80e523db285a06e081c99945a57dd8c25a3631a469
3
  size 343268717