HorcruxNo13
commited on
Commit
·
85ec499
1
Parent(s):
af9390f
Model save
Browse files- README.md +59 -39
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -24,13 +24,13 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Accuracy: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- F1 Score: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -72,42 +72,62 @@ The following hyperparameters were used during training:
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 4 | 0.
|
82 |
-
| No log | 2.0 | 8 | 0.
|
83 |
-
| No log | 3.0 | 12 | 0.
|
84 |
-
| No log | 4.0 | 16 | 0.
|
85 |
-
| No log | 5.0 | 20 | 0.
|
86 |
-
| No log | 6.0 | 24 | 0.
|
87 |
-
| No log | 7.0 | 28 | 0.
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
|
113 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.79
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.7955164222268126
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.79
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.6740
|
44 |
+
- Accuracy: 0.79
|
45 |
+
- Precision: 0.7955
|
46 |
+
- Recall: 0.79
|
47 |
+
- F1 Score: 0.7923
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
+
- num_epochs: 50
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 4 | 0.5895 | 0.725 | 0.5256 | 0.725 | 0.6094 |
|
82 |
+
| No log | 2.0 | 8 | 0.5737 | 0.725 | 0.5256 | 0.725 | 0.6094 |
|
83 |
+
| No log | 3.0 | 12 | 0.5746 | 0.7333 | 0.6978 | 0.7333 | 0.6589 |
|
84 |
+
| No log | 4.0 | 16 | 0.5449 | 0.7292 | 0.7126 | 0.7292 | 0.6263 |
|
85 |
+
| No log | 5.0 | 20 | 0.5943 | 0.7208 | 0.7362 | 0.7208 | 0.7270 |
|
86 |
+
| No log | 6.0 | 24 | 0.5124 | 0.75 | 0.7360 | 0.75 | 0.6895 |
|
87 |
+
| No log | 7.0 | 28 | 0.6057 | 0.6625 | 0.7301 | 0.6625 | 0.6797 |
|
88 |
+
| No log | 8.0 | 32 | 0.5059 | 0.7583 | 0.7376 | 0.7583 | 0.7214 |
|
89 |
+
| No log | 9.0 | 36 | 0.5734 | 0.7125 | 0.7474 | 0.7125 | 0.7237 |
|
90 |
+
| No log | 10.0 | 40 | 0.5069 | 0.7458 | 0.7182 | 0.7458 | 0.7116 |
|
91 |
+
| No log | 11.0 | 44 | 0.5135 | 0.775 | 0.7659 | 0.775 | 0.7689 |
|
92 |
+
| No log | 12.0 | 48 | 0.4943 | 0.775 | 0.7601 | 0.775 | 0.7610 |
|
93 |
+
| 0.5275 | 13.0 | 52 | 0.5654 | 0.7458 | 0.7790 | 0.7458 | 0.7557 |
|
94 |
+
| 0.5275 | 14.0 | 56 | 0.5257 | 0.7625 | 0.7636 | 0.7625 | 0.7631 |
|
95 |
+
| 0.5275 | 15.0 | 60 | 0.5107 | 0.7875 | 0.7813 | 0.7875 | 0.7836 |
|
96 |
+
| 0.5275 | 16.0 | 64 | 0.5514 | 0.7333 | 0.7655 | 0.7333 | 0.7434 |
|
97 |
+
| 0.5275 | 17.0 | 68 | 0.5004 | 0.7833 | 0.7698 | 0.7833 | 0.7699 |
|
98 |
+
| 0.5275 | 18.0 | 72 | 0.5999 | 0.7125 | 0.7738 | 0.7125 | 0.7269 |
|
99 |
+
| 0.5275 | 19.0 | 76 | 0.4975 | 0.7667 | 0.7554 | 0.7667 | 0.7589 |
|
100 |
+
| 0.5275 | 20.0 | 80 | 0.5120 | 0.7917 | 0.7981 | 0.7917 | 0.7944 |
|
101 |
+
| 0.5275 | 21.0 | 84 | 0.5203 | 0.7833 | 0.7876 | 0.7833 | 0.7853 |
|
102 |
+
| 0.5275 | 22.0 | 88 | 0.5304 | 0.8042 | 0.8051 | 0.8042 | 0.8046 |
|
103 |
+
| 0.5275 | 23.0 | 92 | 0.5475 | 0.825 | 0.825 | 0.825 | 0.8250 |
|
104 |
+
| 0.5275 | 24.0 | 96 | 0.5757 | 0.7458 | 0.7661 | 0.7458 | 0.7531 |
|
105 |
+
| 0.2422 | 25.0 | 100 | 0.5669 | 0.7875 | 0.7829 | 0.7875 | 0.7848 |
|
106 |
+
| 0.2422 | 26.0 | 104 | 0.5489 | 0.7958 | 0.7931 | 0.7958 | 0.7943 |
|
107 |
+
| 0.2422 | 27.0 | 108 | 0.5372 | 0.8 | 0.7982 | 0.8 | 0.7990 |
|
108 |
+
| 0.2422 | 28.0 | 112 | 0.5500 | 0.8208 | 0.8160 | 0.8208 | 0.8176 |
|
109 |
+
| 0.2422 | 29.0 | 116 | 0.5682 | 0.8042 | 0.8033 | 0.8042 | 0.8037 |
|
110 |
+
| 0.2422 | 30.0 | 120 | 0.5899 | 0.8083 | 0.8050 | 0.8083 | 0.8064 |
|
111 |
+
| 0.2422 | 31.0 | 124 | 0.6217 | 0.8 | 0.8063 | 0.8 | 0.8026 |
|
112 |
+
| 0.2422 | 32.0 | 128 | 0.6063 | 0.8125 | 0.8053 | 0.8125 | 0.8068 |
|
113 |
+
| 0.2422 | 33.0 | 132 | 0.5843 | 0.8042 | 0.8033 | 0.8042 | 0.8037 |
|
114 |
+
| 0.2422 | 34.0 | 136 | 0.6020 | 0.8125 | 0.8073 | 0.8125 | 0.8091 |
|
115 |
+
| 0.2422 | 35.0 | 140 | 0.6180 | 0.8042 | 0.8092 | 0.8042 | 0.8063 |
|
116 |
+
| 0.2422 | 36.0 | 144 | 0.6287 | 0.8208 | 0.8171 | 0.8208 | 0.8186 |
|
117 |
+
| 0.2422 | 37.0 | 148 | 0.6231 | 0.825 | 0.8234 | 0.825 | 0.8242 |
|
118 |
+
| 0.0631 | 38.0 | 152 | 0.6260 | 0.8292 | 0.8300 | 0.8292 | 0.8296 |
|
119 |
+
| 0.0631 | 39.0 | 156 | 0.6278 | 0.8333 | 0.8294 | 0.8333 | 0.8308 |
|
120 |
+
| 0.0631 | 40.0 | 160 | 0.6325 | 0.8208 | 0.8200 | 0.8208 | 0.8204 |
|
121 |
+
| 0.0631 | 41.0 | 164 | 0.6370 | 0.8083 | 0.8013 | 0.8083 | 0.8032 |
|
122 |
+
| 0.0631 | 42.0 | 168 | 0.6371 | 0.8125 | 0.8100 | 0.8125 | 0.8111 |
|
123 |
+
| 0.0631 | 43.0 | 172 | 0.6404 | 0.8042 | 0.8016 | 0.8042 | 0.8027 |
|
124 |
+
| 0.0631 | 44.0 | 176 | 0.6640 | 0.8292 | 0.8227 | 0.8292 | 0.8229 |
|
125 |
+
| 0.0631 | 45.0 | 180 | 0.6636 | 0.8208 | 0.8185 | 0.8208 | 0.8195 |
|
126 |
+
| 0.0631 | 46.0 | 184 | 0.6826 | 0.8083 | 0.8122 | 0.8083 | 0.8100 |
|
127 |
+
| 0.0631 | 47.0 | 188 | 0.6756 | 0.8208 | 0.8185 | 0.8208 | 0.8195 |
|
128 |
+
| 0.0631 | 48.0 | 192 | 0.6695 | 0.8292 | 0.8246 | 0.8292 | 0.8261 |
|
129 |
+
| 0.0631 | 49.0 | 196 | 0.6669 | 0.825 | 0.8198 | 0.825 | 0.8213 |
|
130 |
+
| 0.0264 | 50.0 | 200 | 0.6658 | 0.825 | 0.8198 | 0.825 | 0.8213 |
|
131 |
|
132 |
|
133 |
### Framework versions
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343268717
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7f5b4cc01fac9b8bb3d6b80e523db285a06e081c99945a57dd8c25a3631a469
|
3 |
size 343268717
|