Initial model commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.18 +/- 19.05
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x00000166574E96C0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000166574E9760>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000166574E9800>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000166574E98A0>", "_build": "<function ActorCriticPolicy._build at 0x00000166574E9940>", "forward": "<function ActorCriticPolicy.forward at 0x00000166574E99E0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x00000166574E9A80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000166574E9B20>", "_predict": "<function ActorCriticPolicy._predict at 0x00000166574E9BC0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000166574E9C60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000166574E9D00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x00000166574E9DA0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x00000166574DB040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736083576562844300, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaw9T1FucY+bpmXvfRv9L4s6cU9xo3WvQAAAAAAAAAAwCzFvY82cLqCGWc1VWHOrwByX7vm2Z20AACAPwAAgD/mwk49BUSpPjx6xr2d6Ry/0RtFvOQwhLwAAAAAAAAAAM38HzuvqF4/DqfCPIKER7+60hq6OFy6vAAAAAAAAAAAGkddvTd6lT/oJZC+MdtJv0jAo70kmxO+AAAAAAAAAABmBpy7qIoWP65wpry6giG/nZjQu9uoMbwAAAAAAAAAAM3LWj2B9qA/s/ClPqYpJL+Vm9c9BjR1PgAAAAAAAAAA5s8dPu+y8D5gC0O+VQMlv8fXXj2zzuS9AAAAAAAAAAAAzK08w7kquqaq8LsFmhmz6IKsuv6kRTMAAIA/AACAPzOzxzvDKVS60WWhuonCN7VGUz67WjO9OQAAgD8AAIA/Zs/RPY6B+T7AFmC9DlMdv6J38T1Fcda9AAAAAAAAAAAAQTk+Ov11P/Z94j4vOhm/OE67PvHRmT4AAAAAAAAAAIBxnb0nn7I/quL+vqLSbb5TTw29kUHDvQAAAAAAAAAAYGitvhQsJD8q1IM+vcDJvkEmXr4FVIs+AAAAAAAAAACThDI+JysrP/3fOb26dhG/qeR7PhrFhr4AAAAAAAAAANr8tL3Zd5I/tnKuvkFLR7+9Mf29Kg0QvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/A0uL74zuMAWyUS8yMAXSUR0CfKN6RQrMDdX2UKGgGR0BzUgxN7BwdaAdLv2gIR0CfKOjOs1badX2UKGgGR0ByY6mce8wpaAdLqWgIR0CfKOvhZQpGdX2UKGgGR0BwHQLw4KhMaAdLk2gIR0CfKSlf7aZhdX2UKGgGR0BzF4lVtGd7aAdL4WgIR0CfKWnlnyuqdX2UKGgGR0Bzlr5/LDAKaAdLwWgIR0CfKh0IkZ75dX2UKGgGR0BztBsGgSOBaAdLqGgIR0CfKmW9US7HdX2UKGgGR0ByI/yRSxZ/aAdLtmgIR0CfKrq6e5FxdX2UKGgGR0ByA4YrJ8v3aAdLj2gIR0CfKtNN8E3bdX2UKGgGR0Byj1DiOvMbaAdL12gIR0CfKtt/WlMzdX2UKGgGR0BwlIhdMTN/aAdLlGgIR0CfKvEAYHgQdX2UKGgGR0BzWN4u9OARaAdL12gIR0CfKvQSi/O/dX2UKGgGR0BwhQuDjBEbaAdL1GgIR0CfKxbjcVQAdX2UKGgGR0BxYsC+10DEaAdLnmgIR0CfK1dmxt52dX2UKGgGR0ByKr1f3N9qaAdLwmgIR0CfK2jOs1badX2UKGgGR0BuHP4CZF5OaAdLpWgIR0CfK3UYsNDudX2UKGgGR0Bxx+UliSaFaAdLk2gIR0CfK8Dfm9xqdX2UKGgGR0BxE2TfR/mUaAdL2WgIR0CfK+nVG0/odX2UKGgGR0By/lVMmF8HaAdL1WgIR0CfLBTXJ5midX2UKGgGR0ByMsFHJ9y+aAdL2GgIR0CfLBTXJ5midX2UKGgGR0BzhqKqGUOeaAdLv2gIR0CfLBr8BMi9dX2UKGgGR0BweU2gnMMaaAdLsGgIR0CfLKY/Vy3kdX2UKGgGR0BxbIygwoLHaAdLq2gIR0CfLNFCswL3dX2UKGgGR0BwHlFCswL3aAdLm2gIR0CfLPgrH2h7dX2UKGgGR0BwWBLM9r44aAdLpGgIR0CfLQBcRlH0dX2UKGgGR0BxjmtNi6QOaAdLm2gIR0CfLP9WIXTFdX2UKGgGR0Bx5ohouf29aAdLsWgIR0CfLYBcRlH0dX2UKGgGR0BzavDR+jM3aAdLvWgIR0CfLYqZc9nsdX2UKGgGR0BxeCVcD8tPaAdLzmgIR0CfLcHmA9V4dX2UKGgGR0Byeli/fwZwaAdLs2gIR0CfLdRT0g8sdX2UKGgGR0BwqODwpe/paAdLyGgIR0CfLipYcNpedX2UKGgGR0Bx/eqjrRjSaAdL1WgIR0CfLkHlfZ27dX2UKGgGR0Byg9rwe/5+aAdLvWgIR0CfLlFBppN9dX2UKGgGR0Bv936wdKdyaAdLtmgIR0CfLl+XqqwRdX2UKGgGR0BxlcNVinYQaAdLtGgIR0CfLoiNbTttdX2UKGgGR0BwWSOZLIxQaAdLvmgIR0CfLqMtbs4UdX2UKGgGR0ByfEy2x6fKaAdLp2gIR0CfL0T3qRlpdX2UKGgGR0BydyAskIHDaAdLqWgIR0CfL1dmg8KYdX2UKGgGR0ByXuMdcSoPaAdL8WgIR0CfL1+yquKXdX2UKGgGR0Byvi+/QBxQaAdL02gIR0CfL5TW5H3DdX2UKGgGR0ByCrH0btJGaAdLv2gIR0CfL6dFvybydX2UKGgGR0BzIlWGRFI/aAdL2GgIR0CfL9p48loldX2UKGgGR0Bw44BbOeJ6aAdLqGgIR0CfMELsKLKndX2UKGgGR0BzlXC79Q40aAdL0GgIR0CfMIeHSF4+dX2UKGgGR0BystByCFsYaAdL3WgIR0CfMMPxhDw6dX2UKGgGR0ByUb0dzXBhaAdL0mgIR0CfMNdmg8KYdX2UKGgGR0ByTKdat9x7aAdLp2gIR0CfMQaBZpztdX2UKGgGR0BxAH5mAbyZaAdLpWgIR0CfMSEg4ffXdX2UKGgGR0Bz4pCJGe+VaAdLumgIR0CfMSY/3WWhdX2UKGgGR0ByvMqx1PnCaAdL0mgIR0CfMWvhqCYkdX2UKGgGR0BzDOuFHrhSaAdL4WgIR0CfMX5P/JeWdX2UKGgGR0ByQ0jLSuyNaAdLj2gIR0CfMYJokAxSdX2UKGgGR0By8JVo6CDmaAdL32gIR0CfMYmTTvy9dX2UKGgGR0BxjvKYAsClaAdLnGgIR0CfMbKJVKf4dX2UKGgGR0Bu6nO4XoC/aAdLqWgIR0CfMccENe+mdX2UKGgGR0BxBGexwAEMaAdLtmgIR0CfMj/Y8Md+dX2UKGgGR0Bwfm0/nnuBaAdLsmgIR0CfMm3t8eCDdX2UKGgGR0Bvgh99c8klaAdLlmgIR0CfMyU5uIhydX2UKGgGR0Bxx8nE2pAEaAdLwGgIR0CfM0oWYWtVdX2UKGgGR0BwivqD9OynaAdL2mgIR0CfM3MMqjJudX2UKGgGR0ByIWO801qGaAdLwWgIR0CfM4+4b0e2dX2UKGgGR0BzaBg6U7jlaAdLtmgIR0CfM7/ZM+NcdX2UKGgGR0Bv7pOi35N5aAdLn2gIR0CfM9NN8E3bdX2UKGgGR0BzDI2hqTKUaAdLrGgIR0CfM+3t8eCDdX2UKGgGR0BwEu2x6fJ4aAdLlGgIR0CfM/1J17pndX2UKGgGR0Byiefh/Aj6aAdLqmgIR0CfNAeHSF4+dX2UKGgGR0BzZqhXbM5faAdL82gIR0CfNGbCrLhadX2UKGgGR0BzYfsSkCV9aAdL7GgIR0CfNJfpljEvdX2UKGgGR0BzSI9A5aNdaAdLyWgIR0CfNK+KTB69dX2UKGgGR0ByukNI9TxYaAdLpWgIR0CfNMHlfZ27dX2UKGgGR0BzxPb7CSA6aAdL4GgIR0CfNMscyWRjdX2UKGgGR0BwJq9SMtK7aAdLnGgIR0CfNZC+lCTmdX2UKGgGR0BxVgyRB/qgaAdLr2gIR0CfNgiNbTttdX2UKGgGR0BzftfiPyTZaAdL+mgIR0CfNlZgogFHdX2UKGgGR0BzhA7xNIsiaAdLs2gIR0CfNpPRArxzdX2UKGgGR0BztbNQj2SMaAdLwGgIR0CfNpbjcVQAdX2UKGgGR0BvtzDsMRYjaAdLr2gIR0CfNsLrX18LdX2UKGgGR0BzGQT238XOaAdL1GgIR0CfNtA7PppwdX2UKGgGR0ByoejGkvboaAdLw2gIR0CfNu3trsSkdX2UKGgGR0Bz0Jn7HhjwaAdLx2gIR0CfNzq6e5FxdX2UKGgGR0BzSTf+CK77aAdL0mgIR0CfN081XNkfdX2UKGgGR0BwJTO3UhFFaAdLnWgIR0CfN1ZgG8mKdX2UKGgGR0Bw7hStNi6QaAdLrGgIR0CfN2nVG0/odX2UKGgGR0BzTV0A93bFaAdNAgJoCEdAnzeX6dlNDnV9lChoBkdAcZwAVfu1GGgHS7poCEdAnzfekpI+XHV9lChoBkdAcuf91loUSWgHS8ZoCEdAnzf4Kx9oe3V9lChoBkdAclhDeCTUzGgHS+loCEdAnzhHBP9DQnV9lChoBkdAcd63rUsnRmgHS4xoCEdAnzlozvZyuXV9lChoBkdAc1DxEv0yxmgHS99oCEdAnzlzDGcWkHV9lChoBkdAbt3evZAY52gHS61oCEdAnzmpUcXFcnV9lChoBkdAcRVmyxA0K2gHS7BoCEdAnzm1m8M/hXV9lChoBkdAc1MzsQd0aWgHS95oCEdAnzn0EkjX4HV9lChoBkdAca5ygwoLHGgHS7ZoCEdAnzoT0QK8c3V9lChoBkdAcolMt9QXRGgHS9ZoCEdAnzoiJ0nw5XV9lChoBkdAct0ZeAuqWGgHS6doCEdAnzo5zPrv9nV9lChoBkdAcjjIVdonKGgHS7xoCEdAnzqlObiIcnV9lChoBkdAcshcWTHKfWgHS8JoCEdAnzrHA/LTyHV9lChoBkdAcUTk4FRpDmgHS6poCEdAnzrozvZyuXV9lChoBkdAcwJRmbsniWgHS8doCEdAnzrxAB1cMXV9lChoBkdAcwo0sOG0u2gHS+xoCEdAnzrv+bVjJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIxEQzpcVXNlcnNcTWFpbmNoYXJ0ZXJcQXBwRGF0YVxMb2NhbFxUZW1wXGlweWtlcm5lbF8yOTY1Nlw3NTI1NzY3ODMucHmUjAg8bGFtYmRhPpSMCDxsYW1iZGE+lEsFQwaAAKBDgACUQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFYwIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjAg8bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVhAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEFlOlxQeXRob25fMzExXExpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBiMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.11.7", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu118", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3d098bb79597b70f65638c632c4cc379b61704946def15f65e171d31fb6733a
|
3 |
+
size 147763
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x00000166574E96C0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x00000166574E9760>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x00000166574E9800>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x00000166574E98A0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x00000166574E9940>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x00000166574E99E0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x00000166574E9A80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x00000166574E9B20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x00000166574E9BC0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x00000166574E9C60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x00000166574E9D00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x00000166574E9DA0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x00000166574DB040>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2031616,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1736083576562844300,
|
30 |
+
"learning_rate": 0.0,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaw9T1FucY+bpmXvfRv9L4s6cU9xo3WvQAAAAAAAAAAwCzFvY82cLqCGWc1VWHOrwByX7vm2Z20AACAPwAAgD/mwk49BUSpPjx6xr2d6Ry/0RtFvOQwhLwAAAAAAAAAAM38HzuvqF4/DqfCPIKER7+60hq6OFy6vAAAAAAAAAAAGkddvTd6lT/oJZC+MdtJv0jAo70kmxO+AAAAAAAAAABmBpy7qIoWP65wpry6giG/nZjQu9uoMbwAAAAAAAAAAM3LWj2B9qA/s/ClPqYpJL+Vm9c9BjR1PgAAAAAAAAAA5s8dPu+y8D5gC0O+VQMlv8fXXj2zzuS9AAAAAAAAAAAAzK08w7kquqaq8LsFmhmz6IKsuv6kRTMAAIA/AACAPzOzxzvDKVS60WWhuonCN7VGUz67WjO9OQAAgD8AAIA/Zs/RPY6B+T7AFmC9DlMdv6J38T1Fcda9AAAAAAAAAAAAQTk+Ov11P/Z94j4vOhm/OE67PvHRmT4AAAAAAAAAAIBxnb0nn7I/quL+vqLSbb5TTw29kUHDvQAAAAAAAAAAYGitvhQsJD8q1IM+vcDJvkEmXr4FVIs+AAAAAAAAAACThDI+JysrP/3fOb26dhG/qeR7PhrFhr4AAAAAAAAAANr8tL3Zd5I/tnKuvkFLR7+9Mf29Kg0QvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/A0uL74zuMAWyUS8yMAXSUR0CfKN6RQrMDdX2UKGgGR0BzUgxN7BwdaAdLv2gIR0CfKOjOs1badX2UKGgGR0ByY6mce8wpaAdLqWgIR0CfKOvhZQpGdX2UKGgGR0BwHQLw4KhMaAdLk2gIR0CfKSlf7aZhdX2UKGgGR0BzF4lVtGd7aAdL4WgIR0CfKWnlnyuqdX2UKGgGR0Bzlr5/LDAKaAdLwWgIR0CfKh0IkZ75dX2UKGgGR0BztBsGgSOBaAdLqGgIR0CfKmW9US7HdX2UKGgGR0ByI/yRSxZ/aAdLtmgIR0CfKrq6e5FxdX2UKGgGR0ByA4YrJ8v3aAdLj2gIR0CfKtNN8E3bdX2UKGgGR0Byj1DiOvMbaAdL12gIR0CfKtt/WlMzdX2UKGgGR0BwlIhdMTN/aAdLlGgIR0CfKvEAYHgQdX2UKGgGR0BzWN4u9OARaAdL12gIR0CfKvQSi/O/dX2UKGgGR0BwhQuDjBEbaAdL1GgIR0CfKxbjcVQAdX2UKGgGR0BxYsC+10DEaAdLnmgIR0CfK1dmxt52dX2UKGgGR0ByKr1f3N9qaAdLwmgIR0CfK2jOs1badX2UKGgGR0BuHP4CZF5OaAdLpWgIR0CfK3UYsNDudX2UKGgGR0Bxx+UliSaFaAdLk2gIR0CfK8Dfm9xqdX2UKGgGR0BxE2TfR/mUaAdL2WgIR0CfK+nVG0/odX2UKGgGR0By/lVMmF8HaAdL1WgIR0CfLBTXJ5midX2UKGgGR0ByMsFHJ9y+aAdL2GgIR0CfLBTXJ5midX2UKGgGR0BzhqKqGUOeaAdLv2gIR0CfLBr8BMi9dX2UKGgGR0BweU2gnMMaaAdLsGgIR0CfLKY/Vy3kdX2UKGgGR0BxbIygwoLHaAdLq2gIR0CfLNFCswL3dX2UKGgGR0BwHlFCswL3aAdLm2gIR0CfLPgrH2h7dX2UKGgGR0BwWBLM9r44aAdLpGgIR0CfLQBcRlH0dX2UKGgGR0BxjmtNi6QOaAdLm2gIR0CfLP9WIXTFdX2UKGgGR0Bx5ohouf29aAdLsWgIR0CfLYBcRlH0dX2UKGgGR0BzavDR+jM3aAdLvWgIR0CfLYqZc9nsdX2UKGgGR0BxeCVcD8tPaAdLzmgIR0CfLcHmA9V4dX2UKGgGR0Byeli/fwZwaAdLs2gIR0CfLdRT0g8sdX2UKGgGR0BwqODwpe/paAdLyGgIR0CfLipYcNpedX2UKGgGR0Bx/eqjrRjSaAdL1WgIR0CfLkHlfZ27dX2UKGgGR0Byg9rwe/5+aAdLvWgIR0CfLlFBppN9dX2UKGgGR0Bv936wdKdyaAdLtmgIR0CfLl+XqqwRdX2UKGgGR0BxlcNVinYQaAdLtGgIR0CfLoiNbTttdX2UKGgGR0BwWSOZLIxQaAdLvmgIR0CfLqMtbs4UdX2UKGgGR0ByfEy2x6fKaAdLp2gIR0CfL0T3qRlpdX2UKGgGR0BydyAskIHDaAdLqWgIR0CfL1dmg8KYdX2UKGgGR0ByXuMdcSoPaAdL8WgIR0CfL1+yquKXdX2UKGgGR0Byvi+/QBxQaAdL02gIR0CfL5TW5H3DdX2UKGgGR0ByCrH0btJGaAdLv2gIR0CfL6dFvybydX2UKGgGR0BzIlWGRFI/aAdL2GgIR0CfL9p48loldX2UKGgGR0Bw44BbOeJ6aAdLqGgIR0CfMELsKLKndX2UKGgGR0BzlXC79Q40aAdL0GgIR0CfMIeHSF4+dX2UKGgGR0BystByCFsYaAdL3WgIR0CfMMPxhDw6dX2UKGgGR0ByUb0dzXBhaAdL0mgIR0CfMNdmg8KYdX2UKGgGR0ByTKdat9x7aAdLp2gIR0CfMQaBZpztdX2UKGgGR0BxAH5mAbyZaAdLpWgIR0CfMSEg4ffXdX2UKGgGR0Bz4pCJGe+VaAdLumgIR0CfMSY/3WWhdX2UKGgGR0ByvMqx1PnCaAdL0mgIR0CfMWvhqCYkdX2UKGgGR0BzDOuFHrhSaAdL4WgIR0CfMX5P/JeWdX2UKGgGR0ByQ0jLSuyNaAdLj2gIR0CfMYJokAxSdX2UKGgGR0By8JVo6CDmaAdL32gIR0CfMYmTTvy9dX2UKGgGR0BxjvKYAsClaAdLnGgIR0CfMbKJVKf4dX2UKGgGR0Bu6nO4XoC/aAdLqWgIR0CfMccENe+mdX2UKGgGR0BxBGexwAEMaAdLtmgIR0CfMj/Y8Md+dX2UKGgGR0Bwfm0/nnuBaAdLsmgIR0CfMm3t8eCDdX2UKGgGR0Bvgh99c8klaAdLlmgIR0CfMyU5uIhydX2UKGgGR0Bxx8nE2pAEaAdLwGgIR0CfM0oWYWtVdX2UKGgGR0BwivqD9OynaAdL2mgIR0CfM3MMqjJudX2UKGgGR0ByIWO801qGaAdLwWgIR0CfM4+4b0e2dX2UKGgGR0BzaBg6U7jlaAdLtmgIR0CfM7/ZM+NcdX2UKGgGR0Bv7pOi35N5aAdLn2gIR0CfM9NN8E3bdX2UKGgGR0BzDI2hqTKUaAdLrGgIR0CfM+3t8eCDdX2UKGgGR0BwEu2x6fJ4aAdLlGgIR0CfM/1J17pndX2UKGgGR0Byiefh/Aj6aAdLqmgIR0CfNAeHSF4+dX2UKGgGR0BzZqhXbM5faAdL82gIR0CfNGbCrLhadX2UKGgGR0BzYfsSkCV9aAdL7GgIR0CfNJfpljEvdX2UKGgGR0BzSI9A5aNdaAdLyWgIR0CfNK+KTB69dX2UKGgGR0ByukNI9TxYaAdLpWgIR0CfNMHlfZ27dX2UKGgGR0BzxPb7CSA6aAdL4GgIR0CfNMscyWRjdX2UKGgGR0BwJq9SMtK7aAdLnGgIR0CfNZC+lCTmdX2UKGgGR0BxVgyRB/qgaAdLr2gIR0CfNgiNbTttdX2UKGgGR0BzftfiPyTZaAdL+mgIR0CfNlZgogFHdX2UKGgGR0BzhA7xNIsiaAdLs2gIR0CfNpPRArxzdX2UKGgGR0BztbNQj2SMaAdLwGgIR0CfNpbjcVQAdX2UKGgGR0BvtzDsMRYjaAdLr2gIR0CfNsLrX18LdX2UKGgGR0BzGQT238XOaAdL1GgIR0CfNtA7PppwdX2UKGgGR0ByoejGkvboaAdLw2gIR0CfNu3trsSkdX2UKGgGR0Bz0Jn7HhjwaAdLx2gIR0CfNzq6e5FxdX2UKGgGR0BzSTf+CK77aAdL0mgIR0CfN081XNkfdX2UKGgGR0BwJTO3UhFFaAdLnWgIR0CfN1ZgG8mKdX2UKGgGR0Bw7hStNi6QaAdLrGgIR0CfN2nVG0/odX2UKGgGR0BzTV0A93bFaAdNAgJoCEdAnzeX6dlNDnV9lChoBkdAcZwAVfu1GGgHS7poCEdAnzfekpI+XHV9lChoBkdAcuf91loUSWgHS8ZoCEdAnzf4Kx9oe3V9lChoBkdAclhDeCTUzGgHS+loCEdAnzhHBP9DQnV9lChoBkdAcd63rUsnRmgHS4xoCEdAnzlozvZyuXV9lChoBkdAc1DxEv0yxmgHS99oCEdAnzlzDGcWkHV9lChoBkdAbt3evZAY52gHS61oCEdAnzmpUcXFcnV9lChoBkdAcRVmyxA0K2gHS7BoCEdAnzm1m8M/hXV9lChoBkdAc1MzsQd0aWgHS95oCEdAnzn0EkjX4HV9lChoBkdAca5ygwoLHGgHS7ZoCEdAnzoT0QK8c3V9lChoBkdAcolMt9QXRGgHS9ZoCEdAnzoiJ0nw5XV9lChoBkdAct0ZeAuqWGgHS6doCEdAnzo5zPrv9nV9lChoBkdAcjjIVdonKGgHS7xoCEdAnzqlObiIcnV9lChoBkdAcshcWTHKfWgHS8JoCEdAnzrHA/LTyHV9lChoBkdAcUTk4FRpDmgHS6poCEdAnzrozvZyuXV9lChoBkdAcwJRmbsniWgHS8doCEdAnzrxAB1cMXV9lChoBkdAcwo0sOG0u2gHS+xoCEdAnzrv+bVjJHVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 620,
|
55 |
+
"n_steps": 2048,
|
56 |
+
"gamma": 0.99,
|
57 |
+
"gae_lambda": 0.95,
|
58 |
+
"ent_coef": 0.0,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 10,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWV9AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIxEQzpcVXNlcnNcTWFpbmNoYXJ0ZXJcQXBwRGF0YVxMb2NhbFxUZW1wXGlweWtlcm5lbF8yOTY1Nlw3NTI1NzY3ODMucHmUjAg8bGFtYmRhPpSMCDxsYW1iZGE+lEsFQwaAAKBDgACUQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFYwIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjAg8bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVhAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEFlOlxQeXRob25fMzExXExpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBiMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dad58e55625d7ab7be205198ba8461d3b06376259e789e8d4869e4783fa8f9f
|
3 |
+
size 88490
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c892e51b75ecf8f98924f42f9ac3e89b898484a70786039a9150a26d3b68ef60
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
- Python: 3.11.7
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.1833564416584, "std_reward": 19.045381240173704, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-05T16:38:25.862052"}
|