{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x00000166574DB040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736083576562844300, "learning_rate": 0.0, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaw9T1FucY+bpmXvfRv9L4s6cU9xo3WvQAAAAAAAAAAwCzFvY82cLqCGWc1VWHOrwByX7vm2Z20AACAPwAAgD/mwk49BUSpPjx6xr2d6Ry/0RtFvOQwhLwAAAAAAAAAAM38HzuvqF4/DqfCPIKER7+60hq6OFy6vAAAAAAAAAAAGkddvTd6lT/oJZC+MdtJv0jAo70kmxO+AAAAAAAAAABmBpy7qIoWP65wpry6giG/nZjQu9uoMbwAAAAAAAAAAM3LWj2B9qA/s/ClPqYpJL+Vm9c9BjR1PgAAAAAAAAAA5s8dPu+y8D5gC0O+VQMlv8fXXj2zzuS9AAAAAAAAAAAAzK08w7kquqaq8LsFmhmz6IKsuv6kRTMAAIA/AACAPzOzxzvDKVS60WWhuonCN7VGUz67WjO9OQAAgD8AAIA/Zs/RPY6B+T7AFmC9DlMdv6J38T1Fcda9AAAAAAAAAAAAQTk+Ov11P/Z94j4vOhm/OE67PvHRmT4AAAAAAAAAAIBxnb0nn7I/quL+vqLSbb5TTw29kUHDvQAAAAAAAAAAYGitvhQsJD8q1IM+vcDJvkEmXr4FVIs+AAAAAAAAAACThDI+JysrP/3fOb26dhG/qeR7PhrFhr4AAAAAAAAAANr8tL3Zd5I/tnKuvkFLR7+9Mf29Kg0QvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/A0uL74zuMAWyUS8yMAXSUR0CfKN6RQrMDdX2UKGgGR0BzUgxN7BwdaAdLv2gIR0CfKOjOs1badX2UKGgGR0ByY6mce8wpaAdLqWgIR0CfKOvhZQpGdX2UKGgGR0BwHQLw4KhMaAdLk2gIR0CfKSlf7aZhdX2UKGgGR0BzF4lVtGd7aAdL4WgIR0CfKWnlnyuqdX2UKGgGR0Bzlr5/LDAKaAdLwWgIR0CfKh0IkZ75dX2UKGgGR0BztBsGgSOBaAdLqGgIR0CfKmW9US7HdX2UKGgGR0ByI/yRSxZ/aAdLtmgIR0CfKrq6e5FxdX2UKGgGR0ByA4YrJ8v3aAdLj2gIR0CfKtNN8E3bdX2UKGgGR0Byj1DiOvMbaAdL12gIR0CfKtt/WlMzdX2UKGgGR0BwlIhdMTN/aAdLlGgIR0CfKvEAYHgQdX2UKGgGR0BzWN4u9OARaAdL12gIR0CfKvQSi/O/dX2UKGgGR0BwhQuDjBEbaAdL1GgIR0CfKxbjcVQAdX2UKGgGR0BxYsC+10DEaAdLnmgIR0CfK1dmxt52dX2UKGgGR0ByKr1f3N9qaAdLwmgIR0CfK2jOs1badX2UKGgGR0BuHP4CZF5OaAdLpWgIR0CfK3UYsNDudX2UKGgGR0Bxx+UliSaFaAdLk2gIR0CfK8Dfm9xqdX2UKGgGR0BxE2TfR/mUaAdL2WgIR0CfK+nVG0/odX2UKGgGR0By/lVMmF8HaAdL1WgIR0CfLBTXJ5midX2UKGgGR0ByMsFHJ9y+aAdL2GgIR0CfLBTXJ5midX2UKGgGR0BzhqKqGUOeaAdLv2gIR0CfLBr8BMi9dX2UKGgGR0BweU2gnMMaaAdLsGgIR0CfLKY/Vy3kdX2UKGgGR0BxbIygwoLHaAdLq2gIR0CfLNFCswL3dX2UKGgGR0BwHlFCswL3aAdLm2gIR0CfLPgrH2h7dX2UKGgGR0BwWBLM9r44aAdLpGgIR0CfLQBcRlH0dX2UKGgGR0BxjmtNi6QOaAdLm2gIR0CfLP9WIXTFdX2UKGgGR0Bx5ohouf29aAdLsWgIR0CfLYBcRlH0dX2UKGgGR0BzavDR+jM3aAdLvWgIR0CfLYqZc9nsdX2UKGgGR0BxeCVcD8tPaAdLzmgIR0CfLcHmA9V4dX2UKGgGR0Byeli/fwZwaAdLs2gIR0CfLdRT0g8sdX2UKGgGR0BwqODwpe/paAdLyGgIR0CfLipYcNpedX2UKGgGR0Bx/eqjrRjSaAdL1WgIR0CfLkHlfZ27dX2UKGgGR0Byg9rwe/5+aAdLvWgIR0CfLlFBppN9dX2UKGgGR0Bv936wdKdyaAdLtmgIR0CfLl+XqqwRdX2UKGgGR0BxlcNVinYQaAdLtGgIR0CfLoiNbTttdX2UKGgGR0BwWSOZLIxQaAdLvmgIR0CfLqMtbs4UdX2UKGgGR0ByfEy2x6fKaAdLp2gIR0CfL0T3qRlpdX2UKGgGR0BydyAskIHDaAdLqWgIR0CfL1dmg8KYdX2UKGgGR0ByXuMdcSoPaAdL8WgIR0CfL1+yquKXdX2UKGgGR0Byvi+/QBxQaAdL02gIR0CfL5TW5H3DdX2UKGgGR0ByCrH0btJGaAdLv2gIR0CfL6dFvybydX2UKGgGR0BzIlWGRFI/aAdL2GgIR0CfL9p48loldX2UKGgGR0Bw44BbOeJ6aAdLqGgIR0CfMELsKLKndX2UKGgGR0BzlXC79Q40aAdL0GgIR0CfMIeHSF4+dX2UKGgGR0BystByCFsYaAdL3WgIR0CfMMPxhDw6dX2UKGgGR0ByUb0dzXBhaAdL0mgIR0CfMNdmg8KYdX2UKGgGR0ByTKdat9x7aAdLp2gIR0CfMQaBZpztdX2UKGgGR0BxAH5mAbyZaAdLpWgIR0CfMSEg4ffXdX2UKGgGR0Bz4pCJGe+VaAdLumgIR0CfMSY/3WWhdX2UKGgGR0ByvMqx1PnCaAdL0mgIR0CfMWvhqCYkdX2UKGgGR0BzDOuFHrhSaAdL4WgIR0CfMX5P/JeWdX2UKGgGR0ByQ0jLSuyNaAdLj2gIR0CfMYJokAxSdX2UKGgGR0By8JVo6CDmaAdL32gIR0CfMYmTTvy9dX2UKGgGR0BxjvKYAsClaAdLnGgIR0CfMbKJVKf4dX2UKGgGR0Bu6nO4XoC/aAdLqWgIR0CfMccENe+mdX2UKGgGR0BxBGexwAEMaAdLtmgIR0CfMj/Y8Md+dX2UKGgGR0Bwfm0/nnuBaAdLsmgIR0CfMm3t8eCDdX2UKGgGR0Bvgh99c8klaAdLlmgIR0CfMyU5uIhydX2UKGgGR0Bxx8nE2pAEaAdLwGgIR0CfM0oWYWtVdX2UKGgGR0BwivqD9OynaAdL2mgIR0CfM3MMqjJudX2UKGgGR0ByIWO801qGaAdLwWgIR0CfM4+4b0e2dX2UKGgGR0BzaBg6U7jlaAdLtmgIR0CfM7/ZM+NcdX2UKGgGR0Bv7pOi35N5aAdLn2gIR0CfM9NN8E3bdX2UKGgGR0BzDI2hqTKUaAdLrGgIR0CfM+3t8eCDdX2UKGgGR0BwEu2x6fJ4aAdLlGgIR0CfM/1J17pndX2UKGgGR0Byiefh/Aj6aAdLqmgIR0CfNAeHSF4+dX2UKGgGR0BzZqhXbM5faAdL82gIR0CfNGbCrLhadX2UKGgGR0BzYfsSkCV9aAdL7GgIR0CfNJfpljEvdX2UKGgGR0BzSI9A5aNdaAdLyWgIR0CfNK+KTB69dX2UKGgGR0ByukNI9TxYaAdLpWgIR0CfNMHlfZ27dX2UKGgGR0BzxPb7CSA6aAdL4GgIR0CfNMscyWRjdX2UKGgGR0BwJq9SMtK7aAdLnGgIR0CfNZC+lCTmdX2UKGgGR0BxVgyRB/qgaAdLr2gIR0CfNgiNbTttdX2UKGgGR0BzftfiPyTZaAdL+mgIR0CfNlZgogFHdX2UKGgGR0BzhA7xNIsiaAdLs2gIR0CfNpPRArxzdX2UKGgGR0BztbNQj2SMaAdLwGgIR0CfNpbjcVQAdX2UKGgGR0BvtzDsMRYjaAdLr2gIR0CfNsLrX18LdX2UKGgGR0BzGQT238XOaAdL1GgIR0CfNtA7PppwdX2UKGgGR0ByoejGkvboaAdLw2gIR0CfNu3trsSkdX2UKGgGR0Bz0Jn7HhjwaAdLx2gIR0CfNzq6e5FxdX2UKGgGR0BzSTf+CK77aAdL0mgIR0CfN081XNkfdX2UKGgGR0BwJTO3UhFFaAdLnWgIR0CfN1ZgG8mKdX2UKGgGR0Bw7hStNi6QaAdLrGgIR0CfN2nVG0/odX2UKGgGR0BzTV0A93bFaAdNAgJoCEdAnzeX6dlNDnV9lChoBkdAcZwAVfu1GGgHS7poCEdAnzfekpI+XHV9lChoBkdAcuf91loUSWgHS8ZoCEdAnzf4Kx9oe3V9lChoBkdAclhDeCTUzGgHS+loCEdAnzhHBP9DQnV9lChoBkdAcd63rUsnRmgHS4xoCEdAnzlozvZyuXV9lChoBkdAc1DxEv0yxmgHS99oCEdAnzlzDGcWkHV9lChoBkdAbt3evZAY52gHS61oCEdAnzmpUcXFcnV9lChoBkdAcRVmyxA0K2gHS7BoCEdAnzm1m8M/hXV9lChoBkdAc1MzsQd0aWgHS95oCEdAnzn0EkjX4HV9lChoBkdAca5ygwoLHGgHS7ZoCEdAnzoT0QK8c3V9lChoBkdAcolMt9QXRGgHS9ZoCEdAnzoiJ0nw5XV9lChoBkdAct0ZeAuqWGgHS6doCEdAnzo5zPrv9nV9lChoBkdAcjjIVdonKGgHS7xoCEdAnzqlObiIcnV9lChoBkdAcshcWTHKfWgHS8JoCEdAnzrHA/LTyHV9lChoBkdAcUTk4FRpDmgHS6poCEdAnzrozvZyuXV9lChoBkdAcwJRmbsniWgHS8doCEdAnzrxAB1cMXV9lChoBkdAcwo0sOG0u2gHS+xoCEdAnzrv+bVjJHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWV9AEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsDQwaXAGQBUwCUTkcAAAAAAAAAAIaUKYwBX5SFlIxEQzpcVXNlcnNcTWFpbmNoYXJ0ZXJcQXBwRGF0YVxMb2NhbFxUZW1wXGlweWtlcm5lbF8yOTY1Nlw3NTI1NzY3ODMucHmUjAg8bGFtYmRhPpSMCDxsYW1iZGE+lEsFQwaAAKBDgACUQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgYfZR9lChoFYwIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjAg8bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBaMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "", ":serialized:": "gAWVhAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEFlOlxQeXRob25fMzExXExpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBiMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.11.7", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu118", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}