--- base_model: mistralai/Mistral-Nemo-Instruct-2407 library_name: peft license: other tags: - llama-factory - lora - generated_from_trainer model-index: - name: sft_dpo_fs results: [] --- # sft_dpo_fs This model is a fine-tuned version of [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) on the heat_transfer_dpo dataset. It achieves the following results on the evaluation set: - Loss: 0.1535 - Rewards/chosen: 17.2823 - Rewards/rejected: 11.3004 - Rewards/accuracies: 0.9610 - Rewards/margins: 5.9819 - Logps/chosen: -2.2063 - Logps/rejected: -60.6033 - Logits/chosen: 0.0035 - Logits/rejected: -0.0076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:------------:|:--------------:|:-------------:|:---------------:| | 0.3835 | 0.0533 | 60 | 0.3287 | 17.1482 | 15.7095 | 0.9280 | 1.4386 | -3.5472 | -16.5118 | -0.5827 | -0.5914 | | 0.2552 | 0.1067 | 120 | 0.1900 | 17.1335 | 13.7535 | 0.9320 | 3.3799 | -3.6944 | -36.0722 | -0.2065 | -0.2218 | | 0.2362 | 0.16 | 180 | 0.2024 | 17.0614 | 11.9722 | 0.9510 | 5.0892 | -4.4150 | -53.8850 | -0.1087 | -0.1222 | | 0.1781 | 0.2133 | 240 | 0.1546 | 17.0620 | 12.2862 | 0.9500 | 4.7758 | -4.4089 | -50.7448 | -0.1243 | -0.1381 | | 0.265 | 0.2667 | 300 | 0.1536 | 17.2493 | 12.6444 | 0.9440 | 4.6050 | -2.5355 | -47.1637 | -0.1744 | -0.1856 | | 0.1605 | 0.32 | 360 | 0.3194 | 17.3612 | 12.2655 | 0.9210 | 5.0958 | -1.4165 | -50.9525 | -0.1062 | -0.1173 | | 0.2894 | 0.3733 | 420 | 0.1679 | 17.3116 | 12.2496 | 0.9450 | 5.0620 | -1.9131 | -51.1113 | -0.0905 | -0.1026 | | 0.1149 | 0.4267 | 480 | 0.2951 | 17.0540 | 11.9844 | 0.9230 | 5.0696 | -4.4890 | -53.7628 | -0.0770 | -0.0883 | | 0.0384 | 0.48 | 540 | 0.1739 | 17.2042 | 12.1334 | 0.9490 | 5.0708 | -2.9873 | -52.2731 | -0.0512 | -0.0612 | | 0.4008 | 0.5333 | 600 | 0.1706 | 17.2853 | 11.6981 | 0.9470 | 5.5872 | -2.1760 | -56.6266 | -0.0358 | -0.0469 | | 0.1678 | 0.5867 | 660 | 0.2050 | 17.2021 | 11.5656 | 0.9450 | 5.6365 | -3.0082 | -57.9516 | -0.0160 | -0.0270 | | 0.2272 | 0.64 | 720 | 0.1402 | 17.3928 | 11.7696 | 0.9520 | 5.6233 | -1.1005 | -55.9117 | -0.0229 | -0.0322 | | 0.1915 | 0.6933 | 780 | 0.2441 | 17.3947 | 11.7656 | 0.9320 | 5.6290 | -1.0823 | -55.9507 | -0.0166 | -0.0266 | | 0.0635 | 0.7467 | 840 | 0.1689 | 17.3812 | 11.5343 | 0.9450 | 5.8469 | -1.2169 | -58.2643 | -0.0111 | -0.0217 | | 0.1703 | 0.8 | 900 | 0.1400 | 17.3271 | 11.3817 | 0.9610 | 5.9455 | -1.7577 | -59.7906 | 0.0002 | -0.0105 | | 0.1138 | 0.8533 | 960 | 0.1441 | 17.3149 | 11.3432 | 0.9630 | 5.9718 | -1.8795 | -60.1756 | 0.0015 | -0.0094 | | 0.0513 | 0.9067 | 1020 | 0.1412 | 17.3211 | 11.3263 | 0.9610 | 5.9948 | -1.8178 | -60.3445 | 0.0045 | -0.0065 | | 0.1189 | 0.96 | 1080 | 0.1508 | 17.2887 | 11.3001 | 0.9610 | 5.9886 | -2.1420 | -60.6061 | 0.0074 | -0.0036 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1