File size: 2,796 Bytes
f1be3e6 bdd8949 f1be3e6 ca37e04 f1be3e6 bdd8949 f1be3e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: transformers
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: longformer-heat_transfer-2epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# longformer-heat_transfer-2epoch
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1222
- Accuracy: 0.954
- F1: 0.9540
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.5517 | 0.1111 | 50 | 0.3868 | 0.844 | 0.8440 |
| 0.4128 | 0.2222 | 100 | 0.3074 | 0.88 | 0.8800 |
| 0.3387 | 0.3333 | 150 | 0.2962 | 0.883 | 0.8829 |
| 0.2646 | 0.4444 | 200 | 0.2183 | 0.932 | 0.9320 |
| 0.4301 | 0.5556 | 250 | 0.3217 | 0.91 | 0.9100 |
| 0.2126 | 0.6667 | 300 | 0.2051 | 0.92 | 0.9197 |
| 0.2372 | 0.7778 | 350 | 0.2259 | 0.912 | 0.9119 |
| 0.2959 | 0.8889 | 400 | 0.1805 | 0.933 | 0.9327 |
| 0.1747 | 1.0 | 450 | 0.2059 | 0.937 | 0.9370 |
| 0.1974 | 1.1111 | 500 | 0.1679 | 0.942 | 0.9420 |
| 0.1445 | 1.2222 | 550 | 0.2515 | 0.924 | 0.9239 |
| 0.1711 | 1.3333 | 600 | 0.1707 | 0.932 | 0.9319 |
| 0.1797 | 1.4444 | 650 | 0.1653 | 0.942 | 0.9420 |
| 0.1149 | 1.5556 | 700 | 0.1419 | 0.954 | 0.9540 |
| 0.2704 | 1.6667 | 750 | 0.1623 | 0.942 | 0.9418 |
| 0.1502 | 1.7778 | 800 | 0.1615 | 0.944 | 0.9440 |
| 0.1408 | 1.8889 | 850 | 0.1126 | 0.953 | 0.9530 |
| 0.1222 | 2.0 | 900 | 0.1222 | 0.954 | 0.9540 |
### Framework versions
- Transformers 4.46.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
|