--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: text2text-generation tags: - code - sql - text-to-sql - text2sql - t2sql base_model: - microsoft/Phi-3.5-mini-instruct --- Introducing Hrida-T2SQL-3B-V0.2, our latest small language model (SLM) tailored for data scientists and industry professionals. This advanced model marks a significant upgrade from our previous release, now equipped with 128k token context window as defaultfor handling even the most intricate data queries with precision. Powered by the Phi 3 architecture, it effortlessly converts natural language queries into precise SQL commands, enhancing data analysis efficiency and decision-making capabilities. Blog & benchmark coming soon! ## Prompt Template ```txt ### Instruction: Provide the system prompt. ### Dialect: Specify the SQL dialect (e.g., MySQL, PostgreSQL, SQL Server, etc.). ### Context: Provide the database schema including table names, column names, and data types. ### Input: User's query. ### Response: Expected SQL query output based on the input and context. ``` - **Instruction (System Prompt)**: This guides the model on processing input to generate the SQL query response effectively. - **Dialect (Optional)**: Specify the SQL variant the model should use to ensure the generated query conforms to the correct syntax. - **Context**: Provide the database schema to the model for generating accurate SQL queries. - **Input**: Provide the user query for the model to comprehend and transform into an SQL query. - **Response**: Expected output from the model. ## Chat Prompt Template ```txt <|system|> { Instruction / System Prompt } <|user|> { Context / User Query } <|end|> <|assistant|> ``` ## Run the Model ### Using Transformers ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer # Define the model and tokenizer model_id = "HridaAI/Hrida-T2SQL-3B-V0.2" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, trust_remote_code=True) # Define the context and prompt prompt = """ Answer to the query will be in the form of an SQL query. ### Context: CREATE TABLE Employees ( EmployeeID INT PRIMARY KEY, FirstName VARCHAR(50), LastName VARCHAR(50), Age INT, DepartmentID INT, Salary DECIMAL(10, 2), DateHired DATE, Active BOOLEAN, FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID) ); CREATE TABLE Departments ( DepartmentID INT PRIMARY KEY, DepartmentName VARCHAR(100), Location VARCHAR(100) ); ### Input: if the hiring date of John is 25/12/2024 and he is 48 years old how long it will take him to retire lets say the retirement age is 55? ### Response: """ # Prepare the input messages = [{"role": "user", "content": prompt}] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) # Generate the output outputs = model.generate(inputs, max_length=300) print(tokenizer.decode(outputs[0])) ``` ### Using MLX ```python from mlx_lm import generate, load model,tokenizer = load("HridaAI/Hrida-T2SQL-3B-V0.2") prompt = """ Answer to the quey will be in the form of SQL query. ### Context: CREATE TABLE Employees ( EmployeeID INT PRIMARY KEY, FirstName VARCHAR(50), LastName VARCHAR(50), Age INT, DepartmentID INT, Salary DECIMAL(10, 2), DateHired DATE, Active BOOLEAN, FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID) ); CREATE TABLE Departments ( DepartmentID INT PRIMARY KEY, DepartmentName VARCHAR(100), Location VARCHAR(100) ); ### Input: if the hiring date of John is 25/12/2024 and he is 48 years old how long it will take him to retire lets say the retirement age is 55? ### Response:""" response = generate(model=model,tokenizer=tokenizer,prompt=prompt, verbose=True) ```