HugMi commited on
Commit
45d27c4
·
verified ·
1 Parent(s): cfcac12

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -1
README.md CHANGED
@@ -1,3 +1,41 @@
1
  ---
2
- {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
  ---
2
+ license: apache-2.0
3
+ tags:
4
+ - text-classification
5
+ - fake-news-detection
6
+ ---
7
+
8
+ # Fake News Detection Model
9
+
10
+ This model is trained to detect fake news articles using DistilBERT.
11
+
12
+ ## Training Data
13
+
14
+ The model was trained on a dataset of fake and real news articles. The dataset was preprocessed to remove irrelevant information and to balance the classes.
15
+
16
+ ## Performance
17
+
18
+ The model was evaluated using 5-fold cross-validation. The average metrics across all folds are as follows:
19
+
20
+ | Metric | Value |
21
+ |-----------|-------|
22
+ | Accuracy | 0.973 |
23
+ | Precision | 0.962 |
24
+ | Recall | 0.986 |
25
+ | F1 | 0.973 |
26
+ | ROC AUC | 0.973 |
27
+
28
+ ## Usage
29
+
30
+ ```python
31
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
32
+
33
+ tokenizer = AutoTokenizer.from_pretrained("HugMi/M3-Assignment2")
34
+ model = AutoModelForSequenceClassification.from_pretrained("HugMi/M3-Assignment2")
35
+
36
+ def classify_text(text):
37
+ inputs = tokenizer(text, return_tensors="pt")
38
+ outputs = model(**inputs)
39
+ predicted_class = outputs.logits.argmax().item()
40
+ return predicted_class # 0 for fake, 1 for real
41
  ---