Text Classification
Transformers
Safetensors
English
bert
Inference Endpoints
pszemraj commited on
Commit
606df5f
·
verified ·
1 Parent(s): 8538ab0

fix example code

Browse files

the example code provided has some small errors - this is a revision that I tested in colab, with the output commented at the bottom for users to verify

Files changed (1) hide show
  1. README.md +5 -4
README.md CHANGED
@@ -19,18 +19,19 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
19
  tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/fineweb-edu-classifier")
20
  model = AutoModelForSequenceClassification.from_pretrained("HuggingFaceTB/fineweb-edu-classifier")
21
 
22
- inputs = tokenizer("Your text here", return_tensors="pt", padding="longest", truncation=True)
23
- inputs = tokenizer(texts, return_tensors="pt", padding="longest", truncation=True).
24
  outputs = model(**inputs)
25
- logits = outputs.logits.squeeze(-1).float().numpy()
26
  score = logits.item()
27
  result = {
28
  "text": text,
29
  "score": score,
30
- "int_score": int(round(max(0, min(score, 5))))
31
  }
32
 
33
  print(result)
 
34
  ```
35
 
36
  ## Training
 
19
  tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/fineweb-edu-classifier")
20
  model = AutoModelForSequenceClassification.from_pretrained("HuggingFaceTB/fineweb-edu-classifier")
21
 
22
+ text = "This is a test sentence."
23
+ inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True)
24
  outputs = model(**inputs)
25
+ logits = outputs.logits.squeeze(-1).float().detach().numpy()
26
  score = logits.item()
27
  result = {
28
  "text": text,
29
  "score": score,
30
+ "int_score": int(round(max(0, min(score, 5)))),
31
  }
32
 
33
  print(result)
34
+ # {'text': 'This is a test sentence.', 'score': 0.07964489609003067, 'int_score': 0}
35
  ```
36
 
37
  ## Training