eliebak HF staff commited on
Commit
a7b0061
·
verified ·
1 Parent(s): 7cc5342

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -194
README.md CHANGED
@@ -1,199 +1,124 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
  ---
7
 
 
8
 
9
+ # SmolLM
10
+
11
+ <center>
12
+ <img src="https://huggingface.co/datasets/HuggingFaceTB/images/resolve/main/banner_smol.png" alt="SmolLM" width="1100" height="600">
13
+ </center>
14
+
15
+ ## Table of Contents
16
+
17
+ 1. [Model Summary](##model-summary)
18
+ 2. [Limitations](##limitations)
19
+ 3. [Training](##training)
20
+ 4. [License](##license)
21
+ 5. [Citation](##citation)
22
+
23
+ ## Model Summary
24
+
25
+ SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters. These models are built on Cosmo-Corpus, a meticulously curated high-quality training dataset. Cosmo-Corpus includes Cosmopedia v2 (28B tokens of synthetic textbooks and stories generated by Mixtral), Python-Edu (4B tokens of educational Python samples from The Stack), and FineWeb-Edu (220B tokens of deduplicated educational web samples from FineWeb). SmolLM models have shown promising results when compared to other models in their size categories across various benchmarks testing common sense reasoning and world knowledge. For detailed information on training, benchmarks and performance, please refer to our full blog post.
26
+
27
+
28
+ ### Generation
29
+ First, make sure to install `transformers` from source:
30
+ ```bash
31
+ pip install git+https://github.com/huggingface/transformers.git
32
+ ```
33
+
34
+ #### Running the model on CPU/GPU/multi GPU
35
+ * _Using full precision_
36
+ ```python
37
+ # pip install git+https://github.com/huggingface/transformers.git # TODO: merge PR to main
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
40
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
41
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
42
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
43
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
44
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
45
+ outputs = model.generate(inputs)
46
+ print(tokenizer.decode(outputs[0]))
47
+ ```
48
+
49
+ * _Using `torch.bfloat16`_
50
+ ```python
51
+ # pip install accelerate
52
+ import torch
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
55
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
56
+ # for fp16 use `torch_dtype=torch.float16` instead
57
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
58
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
59
+ outputs = model.generate(inputs)
60
+ print(tokenizer.decode(outputs[0]))
61
+ ```
62
+ ```bash
63
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
64
+ Memory footprint: 3422.76
65
+ ```
66
+
67
+ #### Quantized Versions through `bitsandbytes`
68
+ * _Using 8-bit precision (int8)_
69
+
70
+ ```python
71
+ # pip install bitsandbytes accelerate
72
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
73
+ # to use 4bit use `load_in_4bit=True` instead
74
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
75
+ checkpoint = "HuggingFaceTB/SmolLM-135M"
76
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
77
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, quantization_config=quantization_config)
78
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to("cuda")
79
+ outputs = model.generate(inputs)
80
+ print(tokenizer.decode(outputs[0]))
81
+ ```
82
+ ```bash
83
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
84
+ # load_in_8bit
85
+ Memory footprint: 1812.14 MB
86
+ # load_in_4bit
87
+ >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB")
88
+ Memory footprint: 1006.84 MB
89
+ ```
90
+
91
+ # Limitations
92
+
93
+ While SmolLM models have been trained on a diverse dataset including educational content and synthetic texts, they have limitations. The models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content. For a more comprehensive discussion of the models' capabilities and limitations, please refer to our full blog post.
94
+
95
+ This repository contains a converted version of our latest trained model. We've noticed a small performance difference between this converted checkpoint (transformers) and the original (nanotron). We're currently working to resolve this issue.
96
+ # Training
97
+
98
+ ## Model
99
+
100
+ - **Architecture:** For architecture detail, see the blog post
101
+ - **Pretraining steps:** 500k
102
+ - **Pretraining tokens:** 1T
103
+ - **Precision:** bfloat16
104
+
105
+ ## Hardware
106
+
107
+ - **GPUs:** 64 H100
108
+
109
+ ## Software
110
+
111
+ - **Training Framework:** [Nanotron](https://github.com/huggingface/nanotron/tree/main)
112
+
113
+ # License
114
+
115
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
116
+
117
+ # Citation
118
+ ```bash
119
+ @misc{allal2024SmolLM,
120
+ title={SmolLM - blazingly fast and remarkably powerful},
121
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Leandro von Werra and Thomas Wolf},
122
+ year={2024},
123
+ }
124
+ ```