Huggingfly commited on
Commit
98f4118
·
1 Parent(s): cce42ee

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1210.97 +/- 263.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcecc3db1685ee21dbdec2c332e441e7d438c7bff15865f49261968295c9046a
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7515b2c3a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7515b2c430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7515b2c4c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7515b2c550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7515b2c5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7515b2c670>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7515b2c700>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7515b2c790>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7515b2c820>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7515b2c8b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7515b2c940>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7515b2c9d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7515b2aa00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1689031950618620168,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIMuMD8h0oY+hXcEP/4ovj/58uE8c8fwPVTEKzzZ4cC/OMY0P/cKtD/Uk8a+oZBkvwWRXz+NGZk/qrMrP0j22D9ll7o/R5sZPqkd9r6taKW+6gQbvwgplb8HTuM/SNYbPnGTiL8YlAM/bvjdPllaWj/FMRJAYYw8Pih9Cz/OrK++oULBv7B2HD7mvvC/XyXzvmPQhj+mlvu7RqstQAF1ljyoRJO/jDBxO8aQKD/OIXu8W/zWv9LhLz3gO13AEiJWPzf08D/qkcS+F9lTvwdbQj7T7G8/own5v2743T6oEZa/BkRQvlOSrz/L0BK/f+Zpv0EEIT4u5GU+hhaHPnpFLjw5NjG/QwfFvyFlsr2hQ7q/rxSMv3R3p73AQ6++8SnCPU2idD0OqpI/RFzNPvEsrr9gAUu/lYY2PlVGhr2M6Bg9cZOIvxiUAz9u+N0+WVpaP1pBlD2Wtog/StLZvSniWj8J6js/wSqPPzXF6b7nXQe/eeG5v+sNQz/awWK/g4VePAfL9j52+wRAt/EvP9Cn2T7dX7U+j3JKQH+9o71qN4m/Ow24vrvwsz/S7YI/L3qYPnGTiL8YlAM/bvjdPllaWj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADdQa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7eyivQAAAACVGvm/AAAAAGi8tL0AAAAAzZ3/PwAAAACNxue9AAAAABxp/z8AAAAAV0kTvQAAAADESt6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIvSNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKt4QjwAAAAA9eb8vwAAAACyrK+9AAAAAAi12T8AAAAAL1IEPgAAAADjwes/AAAAAPojUjwAAAAAUfz/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACF1IDcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQ3sa9AAAAAOCn8r8AAAAANofWPQAAAAD4oN8/AAAAAIxv5T0AAAAAVo/yPwAAAAAVGse9AAAAABu+8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2gHu1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfS5JOwAAAABQFwHAAAAAALNyLj0AAAAA6SnZPwAAAACj8+a9AAAAADMR7j8AAAAALswJvQAAAABmPuS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdxyRp1zQyMAWyUTegDjAF0lEdAqtIY+Sr5qXV9lChoBkdAjnHEkB0ZFWgHTegDaAhHQKrV0M7U5Ml1fZQoaAZHQJmd3Go73f1oB03oA2gIR0Cq2UL7O3UhdX2UKGgGR0CVKj74BV+7aAdN6ANoCEdAqt4gBFNL13V9lChoBkdAk9y4sunMuGgHTegDaAhHQKrh/bs4T9N1fZQoaAZHQIsM1BOYYzloB03oA2gIR0Cq5at5le4TdX2UKGgGR0CLhW/UONHZaAdN6ANoCEdAqugfVPN3XHV9lChoBkdAlk7B+z+m32gHTegDaAhHQKrrUEhaC+V1fZQoaAZHQIqjV67dzn1oB03oA2gIR0Cq7jbwSamXdX2UKGgGR0CRNAcZLqUvaAdN6ANoCEdAqvH655JK8XV9lChoBkdAg388YqG1yGgHTegDaAhHQKr0eFwDNhV1fZQoaAZHQJJdpBMSK3xoB03oA2gIR0Cq+RpbD/EPdX2UKGgGR0CPfsm/FirlaAdN6ANoCEdAqv3Tz3AVPHV9lChoBkdAiwwlKkEcKmgHTegDaAhHQKsCXFERaox1fZQoaAZHQIqj0rd30PJoB03oA2gIR0CrBNLftQbddX2UKGgGR0CR55FwDNhWaAdN6ANoCEdAqwhB1gYxcnV9lChoBkdAkMvm5lOGkGgHTegDaAhHQKsMhvrnkkt1fZQoaAZHQIegZgZ0jkdoB03oA2gIR0CrEmstsenydX2UKGgGR0CIIInF5v9+aAdN6ANoCEdAqxVtrbg0j3V9lChoBkdAibbRNATqS2gHTegDaAhHQKsaMMOwxFl1fZQoaAZHQIsfTWoWHk9oB03oA2gIR0CrHsnIp6QedX2UKGgGR0CImp7JnxrjaAdN6ANoCEdAqyKkYTCcgHV9lChoBkdAfPV2F36hx2gHTegDaAhHQKslHtShrWR1fZQoaAZHQIiDZ/kNnXdoB03oA2gIR0CrKGcrAgxKdX2UKGgGR0CNqE42CNCJaAdN6ANoCEdAqytUEzO5a3V9lChoBkdAjPInpbD/EWgHTegDaAhHQKsvEBFuvU11fZQoaAZHQIW76jafzz5oB03oA2gIR0CrMY9Mbm2cdX2UKGgGR0CAjxM3ZPEbaAdN6ANoCEdAqzWe9DhLoXV9lChoBkdAjBrtm+TNdWgHTegDaAhHQKs6N4iX6ZZ1fZQoaAZHQId58mShakhoB03oA2gIR0CrP1WwmmcfdX2UKGgGR0CIuOvaDf3waAdN6ANoCEdAq0HPGXHBDXV9lChoBkdAh1UEpAlfJGgHTegDaAhHQKtFAZVn27F1fZQoaAZHQHEXpMHryDtoB03oA2gIR0CrR/EpiI+GdX2UKGgGR0CHc1fP5YYBaAdN6ANoCEdAq0u5e9i+c3V9lChoBkdAgphw+2VmjGgHTegDaAhHQKtOKZUkv9N1fZQoaAZHQIRBhn6Eal1oB03oA2gIR0CrUVTxPO6edX2UKGgGR0CFU1uAI6bOaAdN6ANoCEdAq1VD9If8uXV9lChoBkdAheTMl9jPOmgHTegDaAhHQKta/cqvvBt1fZQoaAZHQIFJX9UCJXRoB03oA2gIR0CrXg27OE/TdX2UKGgGR0CJBn/PPcBVaAdN6ANoCEdAq2FBvvSc9XV9lChoBkdAiDDBciW3SmgHTegDaAhHQKtkNk078vV1fZQoaAZHQH+ucolUp/hoB03oA2gIR0CrZ/vXTVlPdX2UKGgGR0CIy06Mir1eaAdN6ANoCEdAq2pyJ2t+1HV9lChoBkdAiirAeq7yx2gHTegDaAhHQKttrtqHoHN1fZQoaAZHQInRTmSyMUBoB03oA2gIR0CrcJ/EXLvDdX2UKGgGR0CHmwrmQr+YaAdN6ANoCEdAq3Yl29tdiXV9lChoBkdAiWnFnh86WGgHTegDaAhHQKt59K7qY7d1fZQoaAZHQHl5aWszVMFoB03oA2gIR0CrfeNvOyE+dX2UKGgGR0CFxGiqyWzGaAdN6ANoCEdAq4DDE3sHB3V9lChoBkdAfKSsQNCqqGgHTegDaAhHQKuEl+Q2dd51fZQoaAZHQItL9OXVsk9oB03oA2gIR0CrhwQjdHlPdX2UKGgGR0CMrp1uivgWaAdN6ANoCEdAq4o/rdFfA3V9lChoBkdAkSFGyon8bmgHTegDaAhHQKuNKlRgqmV1fZQoaAZHQIpWoJPZZjhoB03oA2gIR0CrkVyRB/qgdX2UKGgGR0CI2MBaLXMAaAdN6ANoCEdAq5T+xB3RonV9lChoBkdAkMfIOx0MgGgHTegDaAhHQKuaBqptJnR1fZQoaAZHQIvaiCcwxnFoB03oA2gIR0CrnU0xVQyidX2UKGgGR0BcOISQHRkVaAdNEQFoCEdAq53Ee8wpOXV9lChoBkdAkWSuQp4KQmgHTegDaAhHQKuhBJp35et1fZQoaAZHQI5aPNu+AVhoB03oA2gIR0Cro35jH4oJdX2UKGgGR0CNFQZH/cWTaAdN6ANoCEdAq6mwWrOqvXV9lChoBkdAjbnM+3YthGgHTegDaAhHQKuqINEw35x1fZQoaAZHQI01YEIPbwloB03oA2gIR0CrrWcQ7LdOdX2UKGgGR0CImsToMa0haAdN6ANoCEdAq7BZLTQVsXV9lChoBkdAkTELaIvalGgHTegDaAhHQKu5yoMKCxx1fZQoaAZHQJAKcosqaw5oB03oA2gIR0CrulHE/B3zdX2UKGgGR0CR/Oe8f3evaAdN6ANoCEdAq72RgkTpPnV9lChoBkdAkJItl/Yra2gHTegDaAhHQKu/92bG3nZ1fZQoaAZHQJOi+QQtjCpoB03oA2gIR0CrxhnVXmvGdX2UKGgGR0CPE+a8Yht+aAdN6ANoCEdAq8aIzUI9knV9lChoBkdAkKHqBZpztGgHTegDaAhHQKvJw/5ckdF1fZQoaAZHQIQ2UP8Q7LdoB03oA2gIR0CrzCgQHzH0dX2UKGgGR0CJahFTefqYaAdN6ANoCEdAq9RVJL/S6XV9lChoBkdAhtEM5wOvuGgHTegDaAhHQKvU/Qw9JSR1fZQoaAZHQJALDCiyprFoB03oA2gIR0Cr2bZrHlwMdX2UKGgGR0CG2anEVFhHaAdN6ANoCEdAq9wdEgGKRHV9lChoBkdAkmQ1E3KjjGgHTegDaAhHQKviM6cRUWF1fZQoaAZHQJDZT3ztkWhoB03oA2gIR0Cr4qNnwob5dX2UKGgGR0CUN6FzMibEaAdN6ANoCEdAq+XjL4etCHV9lChoBkdAkw5GzWwu/WgHTegDaAhHQKvoV31SOzZ1fZQoaAZHQI7gox59mYloB03oA2gIR0Cr7zJ/G2kSdX2UKGgGR0CQ/yy3kPtlaAdN6ANoCEdAq+/Z/NJOFnV9lChoBkdAkv5Z6QeV9mgHTegDaAhHQKv0163y7PJ1fZQoaAZHQJS1OtMfzSVoB03oA2gIR0Cr+GtUGVzIdX2UKGgGR0CTjSTisGPgaAdN6ANoCEdAq/5y6pYLcHV9lChoBkdAmI5oNNJvpGgHTegDaAhHQKv+4X668QJ1fZQoaAZHQJVTBIAfdRBoB03oA2gIR0CsAjeyiVSodX2UKGgGR0CWSyTYdyT7aAdN6ANoCEdArASc7r9l3HV9lChoBkdAj5bgIppeu2gHTegDaAhHQKwKsoBJZnt1fZQoaAZHQJAdtiG34KxoB03oA2gIR0CsCyGuTzNEdX2UKGgGR0CSstkNnXd1aAdN6ANoCEdArA9YSvkilnV9lChoBkdAlchysOoYN2gHTegDaAhHQKwTD10T1011fZQoaAZHQJbR2dJ8OTdoB03oA2gIR0CsGrHDiwSrdX2UKGgGR0CRmdq0MPSVaAdN6ANoCEdArBsldgOSXHV9lChoBkdAl1WkaVD8cmgHTegDaAhHQKwebFm4Ajp1fZQoaAZHQJJ8F7AtWdVoB03oA2gIR0CsINRQBPsSdX2UKGgGR0CRwz9KVY6oaAdN6ANoCEdArCbf5i3G43V9lChoBkdAlj2NpItlI2gHTegDaAhHQKwnULyc0+F1fZQoaAZHQHsIx51Ng0FoB03oA2gIR0CsKrm29crzdX2UKGgGR0CQzOnYxtYTaAdN6ANoCEdArC4K7yxzJnVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe8329b45d58db3e199ce71e03ce55bc5a409af9a7124e4c806ff2cfc37a7420
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:730364eba6930b2d3977b0c6869d09fb625f51de5bd0644253df606cf0d73c65
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7515b2c3a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7515b2c430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7515b2c4c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7515b2c550>", "_build": "<function ActorCriticPolicy._build at 0x7f7515b2c5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7515b2c670>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7515b2c700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7515b2c790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7515b2c820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7515b2c8b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7515b2c940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7515b2c9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7515b2aa00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689031950618620168, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIMuMD8h0oY+hXcEP/4ovj/58uE8c8fwPVTEKzzZ4cC/OMY0P/cKtD/Uk8a+oZBkvwWRXz+NGZk/qrMrP0j22D9ll7o/R5sZPqkd9r6taKW+6gQbvwgplb8HTuM/SNYbPnGTiL8YlAM/bvjdPllaWj/FMRJAYYw8Pih9Cz/OrK++oULBv7B2HD7mvvC/XyXzvmPQhj+mlvu7RqstQAF1ljyoRJO/jDBxO8aQKD/OIXu8W/zWv9LhLz3gO13AEiJWPzf08D/qkcS+F9lTvwdbQj7T7G8/own5v2743T6oEZa/BkRQvlOSrz/L0BK/f+Zpv0EEIT4u5GU+hhaHPnpFLjw5NjG/QwfFvyFlsr2hQ7q/rxSMv3R3p73AQ6++8SnCPU2idD0OqpI/RFzNPvEsrr9gAUu/lYY2PlVGhr2M6Bg9cZOIvxiUAz9u+N0+WVpaP1pBlD2Wtog/StLZvSniWj8J6js/wSqPPzXF6b7nXQe/eeG5v+sNQz/awWK/g4VePAfL9j52+wRAt/EvP9Cn2T7dX7U+j3JKQH+9o71qN4m/Ow24vrvwsz/S7YI/L3qYPnGTiL8YlAM/bvjdPllaWj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADdQa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7eyivQAAAACVGvm/AAAAAGi8tL0AAAAAzZ3/PwAAAACNxue9AAAAABxp/z8AAAAAV0kTvQAAAADESt6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIvSNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKt4QjwAAAAA9eb8vwAAAACyrK+9AAAAAAi12T8AAAAAL1IEPgAAAADjwes/AAAAAPojUjwAAAAAUfz/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACF1IDcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQ3sa9AAAAAOCn8r8AAAAANofWPQAAAAD4oN8/AAAAAIxv5T0AAAAAVo/yPwAAAAAVGse9AAAAABu+8L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC2gHu1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfS5JOwAAAABQFwHAAAAAALNyLj0AAAAA6SnZPwAAAACj8+a9AAAAADMR7j8AAAAALswJvQAAAABmPuS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdxyRp1zQyMAWyUTegDjAF0lEdAqtIY+Sr5qXV9lChoBkdAjnHEkB0ZFWgHTegDaAhHQKrV0M7U5Ml1fZQoaAZHQJmd3Go73f1oB03oA2gIR0Cq2UL7O3UhdX2UKGgGR0CVKj74BV+7aAdN6ANoCEdAqt4gBFNL13V9lChoBkdAk9y4sunMuGgHTegDaAhHQKrh/bs4T9N1fZQoaAZHQIsM1BOYYzloB03oA2gIR0Cq5at5le4TdX2UKGgGR0CLhW/UONHZaAdN6ANoCEdAqugfVPN3XHV9lChoBkdAlk7B+z+m32gHTegDaAhHQKrrUEhaC+V1fZQoaAZHQIqjV67dzn1oB03oA2gIR0Cq7jbwSamXdX2UKGgGR0CRNAcZLqUvaAdN6ANoCEdAqvH655JK8XV9lChoBkdAg388YqG1yGgHTegDaAhHQKr0eFwDNhV1fZQoaAZHQJJdpBMSK3xoB03oA2gIR0Cq+RpbD/EPdX2UKGgGR0CPfsm/FirlaAdN6ANoCEdAqv3Tz3AVPHV9lChoBkdAiwwlKkEcKmgHTegDaAhHQKsCXFERaox1fZQoaAZHQIqj0rd30PJoB03oA2gIR0CrBNLftQbddX2UKGgGR0CR55FwDNhWaAdN6ANoCEdAqwhB1gYxcnV9lChoBkdAkMvm5lOGkGgHTegDaAhHQKsMhvrnkkt1fZQoaAZHQIegZgZ0jkdoB03oA2gIR0CrEmstsenydX2UKGgGR0CIIInF5v9+aAdN6ANoCEdAqxVtrbg0j3V9lChoBkdAibbRNATqS2gHTegDaAhHQKsaMMOwxFl1fZQoaAZHQIsfTWoWHk9oB03oA2gIR0CrHsnIp6QedX2UKGgGR0CImp7JnxrjaAdN6ANoCEdAqyKkYTCcgHV9lChoBkdAfPV2F36hx2gHTegDaAhHQKslHtShrWR1fZQoaAZHQIiDZ/kNnXdoB03oA2gIR0CrKGcrAgxKdX2UKGgGR0CNqE42CNCJaAdN6ANoCEdAqytUEzO5a3V9lChoBkdAjPInpbD/EWgHTegDaAhHQKsvEBFuvU11fZQoaAZHQIW76jafzz5oB03oA2gIR0CrMY9Mbm2cdX2UKGgGR0CAjxM3ZPEbaAdN6ANoCEdAqzWe9DhLoXV9lChoBkdAjBrtm+TNdWgHTegDaAhHQKs6N4iX6ZZ1fZQoaAZHQId58mShakhoB03oA2gIR0CrP1WwmmcfdX2UKGgGR0CIuOvaDf3waAdN6ANoCEdAq0HPGXHBDXV9lChoBkdAh1UEpAlfJGgHTegDaAhHQKtFAZVn27F1fZQoaAZHQHEXpMHryDtoB03oA2gIR0CrR/EpiI+GdX2UKGgGR0CHc1fP5YYBaAdN6ANoCEdAq0u5e9i+c3V9lChoBkdAgphw+2VmjGgHTegDaAhHQKtOKZUkv9N1fZQoaAZHQIRBhn6Eal1oB03oA2gIR0CrUVTxPO6edX2UKGgGR0CFU1uAI6bOaAdN6ANoCEdAq1VD9If8uXV9lChoBkdAheTMl9jPOmgHTegDaAhHQKta/cqvvBt1fZQoaAZHQIFJX9UCJXRoB03oA2gIR0CrXg27OE/TdX2UKGgGR0CJBn/PPcBVaAdN6ANoCEdAq2FBvvSc9XV9lChoBkdAiDDBciW3SmgHTegDaAhHQKtkNk078vV1fZQoaAZHQH+ucolUp/hoB03oA2gIR0CrZ/vXTVlPdX2UKGgGR0CIy06Mir1eaAdN6ANoCEdAq2pyJ2t+1HV9lChoBkdAiirAeq7yx2gHTegDaAhHQKttrtqHoHN1fZQoaAZHQInRTmSyMUBoB03oA2gIR0CrcJ/EXLvDdX2UKGgGR0CHmwrmQr+YaAdN6ANoCEdAq3Yl29tdiXV9lChoBkdAiWnFnh86WGgHTegDaAhHQKt59K7qY7d1fZQoaAZHQHl5aWszVMFoB03oA2gIR0CrfeNvOyE+dX2UKGgGR0CFxGiqyWzGaAdN6ANoCEdAq4DDE3sHB3V9lChoBkdAfKSsQNCqqGgHTegDaAhHQKuEl+Q2dd51fZQoaAZHQItL9OXVsk9oB03oA2gIR0CrhwQjdHlPdX2UKGgGR0CMrp1uivgWaAdN6ANoCEdAq4o/rdFfA3V9lChoBkdAkSFGyon8bmgHTegDaAhHQKuNKlRgqmV1fZQoaAZHQIpWoJPZZjhoB03oA2gIR0CrkVyRB/qgdX2UKGgGR0CI2MBaLXMAaAdN6ANoCEdAq5T+xB3RonV9lChoBkdAkMfIOx0MgGgHTegDaAhHQKuaBqptJnR1fZQoaAZHQIvaiCcwxnFoB03oA2gIR0CrnU0xVQyidX2UKGgGR0BcOISQHRkVaAdNEQFoCEdAq53Ee8wpOXV9lChoBkdAkWSuQp4KQmgHTegDaAhHQKuhBJp35et1fZQoaAZHQI5aPNu+AVhoB03oA2gIR0Cro35jH4oJdX2UKGgGR0CNFQZH/cWTaAdN6ANoCEdAq6mwWrOqvXV9lChoBkdAjbnM+3YthGgHTegDaAhHQKuqINEw35x1fZQoaAZHQI01YEIPbwloB03oA2gIR0CrrWcQ7LdOdX2UKGgGR0CImsToMa0haAdN6ANoCEdAq7BZLTQVsXV9lChoBkdAkTELaIvalGgHTegDaAhHQKu5yoMKCxx1fZQoaAZHQJAKcosqaw5oB03oA2gIR0CrulHE/B3zdX2UKGgGR0CR/Oe8f3evaAdN6ANoCEdAq72RgkTpPnV9lChoBkdAkJItl/Yra2gHTegDaAhHQKu/92bG3nZ1fZQoaAZHQJOi+QQtjCpoB03oA2gIR0CrxhnVXmvGdX2UKGgGR0CPE+a8Yht+aAdN6ANoCEdAq8aIzUI9knV9lChoBkdAkKHqBZpztGgHTegDaAhHQKvJw/5ckdF1fZQoaAZHQIQ2UP8Q7LdoB03oA2gIR0CrzCgQHzH0dX2UKGgGR0CJahFTefqYaAdN6ANoCEdAq9RVJL/S6XV9lChoBkdAhtEM5wOvuGgHTegDaAhHQKvU/Qw9JSR1fZQoaAZHQJALDCiyprFoB03oA2gIR0Cr2bZrHlwMdX2UKGgGR0CG2anEVFhHaAdN6ANoCEdAq9wdEgGKRHV9lChoBkdAkmQ1E3KjjGgHTegDaAhHQKviM6cRUWF1fZQoaAZHQJDZT3ztkWhoB03oA2gIR0Cr4qNnwob5dX2UKGgGR0CUN6FzMibEaAdN6ANoCEdAq+XjL4etCHV9lChoBkdAkw5GzWwu/WgHTegDaAhHQKvoV31SOzZ1fZQoaAZHQI7gox59mYloB03oA2gIR0Cr7zJ/G2kSdX2UKGgGR0CQ/yy3kPtlaAdN6ANoCEdAq+/Z/NJOFnV9lChoBkdAkv5Z6QeV9mgHTegDaAhHQKv0163y7PJ1fZQoaAZHQJS1OtMfzSVoB03oA2gIR0Cr+GtUGVzIdX2UKGgGR0CTjSTisGPgaAdN6ANoCEdAq/5y6pYLcHV9lChoBkdAmI5oNNJvpGgHTegDaAhHQKv+4X668QJ1fZQoaAZHQJVTBIAfdRBoB03oA2gIR0CsAjeyiVSodX2UKGgGR0CWSyTYdyT7aAdN6ANoCEdArASc7r9l3HV9lChoBkdAj5bgIppeu2gHTegDaAhHQKwKsoBJZnt1fZQoaAZHQJAdtiG34KxoB03oA2gIR0CsCyGuTzNEdX2UKGgGR0CSstkNnXd1aAdN6ANoCEdArA9YSvkilnV9lChoBkdAlchysOoYN2gHTegDaAhHQKwTD10T1011fZQoaAZHQJbR2dJ8OTdoB03oA2gIR0CsGrHDiwSrdX2UKGgGR0CRmdq0MPSVaAdN6ANoCEdArBsldgOSXHV9lChoBkdAl1WkaVD8cmgHTegDaAhHQKwebFm4Ajp1fZQoaAZHQJJ8F7AtWdVoB03oA2gIR0CsINRQBPsSdX2UKGgGR0CRwz9KVY6oaAdN6ANoCEdArCbf5i3G43V9lChoBkdAlj2NpItlI2gHTegDaAhHQKwnULyc0+F1fZQoaAZHQHsIx51Ng0FoB03oA2gIR0CsKrm29crzdX2UKGgGR0CQzOnYxtYTaAdN6ANoCEdArC4K7yxzJnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cf97908dc07aab8b2a201cbd52ac2fd69f0a6a166fbca5ab9c210b6a7c90287
3
+ size 1060803
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1210.9701255573746, "std_reward": 263.9811852410006, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-11T00:42:26.676897"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84f97bc41d00f64122c3c5261b0ce1e34f91e177aa464b97fb5fb38f6292eebd
3
+ size 2176