Huhujingjing
commited on
Commit
·
3717306
1
Parent(s):
9462766
Upload 2 files
Browse files- configuration_transmxm.py +48 -0
- modeling_transmxm.py +1291 -0
configuration_transmxm.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class TransmxmConfig(PretrainedConfig):
|
6 |
+
model_type = "transmxm"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
dim: int = 128,
|
11 |
+
n_layer: int = 6,
|
12 |
+
cutoff: float = 5.0,
|
13 |
+
num_spherical: int = 7,
|
14 |
+
num_radial: int = 6,
|
15 |
+
envelope_exponent: int = 5,
|
16 |
+
|
17 |
+
smiles: List[str] = None,
|
18 |
+
processor_class: str = "SmilesProcessor",
|
19 |
+
**kwargs,
|
20 |
+
):
|
21 |
+
self.dim = dim # the dimension of input feature
|
22 |
+
self.n_layer = n_layer # the number of GCN layers
|
23 |
+
self.cutoff = cutoff # the cutoff distance for neighbor searching
|
24 |
+
self.num_spherical = num_spherical # the number of spherical harmonics
|
25 |
+
self.num_radial = num_radial # the number of radial basis
|
26 |
+
self.envelope_exponent = envelope_exponent # the envelope exponent
|
27 |
+
|
28 |
+
self.smiles = smiles # process smiles
|
29 |
+
self.processor_class = processor_class
|
30 |
+
|
31 |
+
|
32 |
+
super().__init__(**kwargs)
|
33 |
+
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
transmxm_config = TransmxmConfig(
|
37 |
+
dim=128,
|
38 |
+
n_layer=6,
|
39 |
+
cutoff=5.0,
|
40 |
+
num_spherical=7,
|
41 |
+
num_radial=6,
|
42 |
+
envelope_exponent=5,
|
43 |
+
smiles=["C", "CC", "CCC"],
|
44 |
+
processor_class="SmilesProcessor"
|
45 |
+
)
|
46 |
+
transmxm_config.save_pretrained("custom-transmxm")
|
47 |
+
|
48 |
+
|
modeling_transmxm.py
ADDED
@@ -0,0 +1,1291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
|
3 |
+
from transmxm_model.configuration_transmxm import TransmxmConfig
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch.nn import Parameter, Sequential, ModuleList, Linear
|
11 |
+
|
12 |
+
from rdkit import Chem
|
13 |
+
from rdkit.Chem import AllChem
|
14 |
+
|
15 |
+
from transformers import PretrainedConfig
|
16 |
+
from transformers import PreTrainedModel
|
17 |
+
from transformers import AutoModel
|
18 |
+
|
19 |
+
from torch_geometric.data import Data
|
20 |
+
from torch_geometric.loader import DataLoader
|
21 |
+
from torch_geometric.utils import remove_self_loops, add_self_loops, sort_edge_index
|
22 |
+
from torch_scatter import scatter
|
23 |
+
from torch_geometric.nn import global_add_pool, radius
|
24 |
+
from torch_sparse import SparseTensor
|
25 |
+
|
26 |
+
from transmxm_model.configuration_transmxm import TransmxmConfig
|
27 |
+
|
28 |
+
from tqdm import tqdm
|
29 |
+
import numpy as np
|
30 |
+
import pandas as pd
|
31 |
+
from typing import List
|
32 |
+
import math
|
33 |
+
import inspect
|
34 |
+
from operator import itemgetter
|
35 |
+
from collections import OrderedDict
|
36 |
+
from math import sqrt, pi as PI
|
37 |
+
from scipy.optimize import brentq
|
38 |
+
from scipy import special as sp
|
39 |
+
|
40 |
+
try:
|
41 |
+
import sympy as sym
|
42 |
+
except ImportError:
|
43 |
+
sym = None
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
class SmilesDataset(torch.utils.data.Dataset):
|
48 |
+
def __init__(self, smiles):
|
49 |
+
self.smiles_list = smiles
|
50 |
+
self.data_list = []
|
51 |
+
|
52 |
+
|
53 |
+
def __len__(self):
|
54 |
+
return len(self.data_list)
|
55 |
+
|
56 |
+
def __getitem__(self, idx):
|
57 |
+
return self.data_list[idx]
|
58 |
+
|
59 |
+
def get_data(self, smiles):
|
60 |
+
self.smiles_list = smiles
|
61 |
+
# self.data_list = []
|
62 |
+
# bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
|
63 |
+
types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'S': 4}
|
64 |
+
|
65 |
+
for i in range(len(self.smiles_list)):
|
66 |
+
# 将 SMILES 表示转换为 RDKit 的分子对象
|
67 |
+
# print(self.smiles_list[i])
|
68 |
+
mol = Chem.MolFromSmiles(self.smiles_list[i]) # 从smiles编码中获取结构信息
|
69 |
+
if mol is None:
|
70 |
+
print("无法创建Mol对象", self.smiles_list[i])
|
71 |
+
else:
|
72 |
+
|
73 |
+
mol3d = Chem.AddHs(
|
74 |
+
mol) # 在rdkit中,分子在默认情况下是不显示氢的,但氢原子对于真实的几何构象计算有很大的影响,所以在计算3D构象前,需要使用Chem.AddHs()方法加上氢原子
|
75 |
+
if mol3d is None:
|
76 |
+
print("无法创建mol3d对象", self.smiles_list[i])
|
77 |
+
else:
|
78 |
+
AllChem.EmbedMolecule(mol3d, randomSeed=1) # 生成3D构象
|
79 |
+
|
80 |
+
N = mol3d.GetNumAtoms()
|
81 |
+
# 获取原子坐标信息
|
82 |
+
if mol3d.GetNumConformers() > 0:
|
83 |
+
conformer = mol3d.GetConformer()
|
84 |
+
pos = conformer.GetPositions()
|
85 |
+
pos = torch.tensor(pos, dtype=torch.float)
|
86 |
+
|
87 |
+
type_idx = []
|
88 |
+
# atomic_number = []
|
89 |
+
# aromatic = []
|
90 |
+
# sp = []
|
91 |
+
# sp2 = []
|
92 |
+
# sp3 = []
|
93 |
+
for atom in mol3d.GetAtoms():
|
94 |
+
type_idx.append(types[atom.GetSymbol()])
|
95 |
+
# atomic_number.append(atom.GetAtomicNum())
|
96 |
+
# aromatic.append(1 if atom.GetIsAromatic() else 0)
|
97 |
+
# hybridization = atom.GetHybridization()
|
98 |
+
# sp.append(1 if hybridization == HybridizationType.SP else 0)
|
99 |
+
# sp2.append(1 if hybridization == HybridizationType.SP2 else 0)
|
100 |
+
# sp3.append(1 if hybridization == HybridizationType.SP3 else 0)
|
101 |
+
|
102 |
+
# z = torch.tensor(atomic_number, dtype=torch.long)
|
103 |
+
|
104 |
+
row, col, edge_type = [], [], []
|
105 |
+
for bond in mol3d.GetBonds():
|
106 |
+
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
|
107 |
+
row += [start, end]
|
108 |
+
col += [end, start]
|
109 |
+
# edge_type += 2 * [bonds[bond.GetBondType()]]
|
110 |
+
|
111 |
+
edge_index = torch.tensor([row, col], dtype=torch.long)
|
112 |
+
# edge_type = torch.tensor(edge_type, dtype=torch.long)
|
113 |
+
# edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)
|
114 |
+
|
115 |
+
perm = (edge_index[0] * N + edge_index[1]).argsort()
|
116 |
+
edge_index = edge_index[:, perm]
|
117 |
+
# edge_type = edge_type[perm]
|
118 |
+
# edge_attr = edge_attr[perm]
|
119 |
+
#
|
120 |
+
# row, col = edge_index
|
121 |
+
# hs = (z == 1).to(torch.float)
|
122 |
+
|
123 |
+
x = torch.tensor(type_idx).to(torch.float)
|
124 |
+
|
125 |
+
# y = self.y_list[i]
|
126 |
+
|
127 |
+
data = Data(x=x, pos=pos, edge_index=edge_index, smiles=self.smiles_list[i])
|
128 |
+
|
129 |
+
self.data_list.append(data)
|
130 |
+
else:
|
131 |
+
print("无法创建comfor", self.smiles_list[i])
|
132 |
+
return self.data_list
|
133 |
+
|
134 |
+
|
135 |
+
# --------------------------------------------------------
|
136 |
+
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
|
137 |
+
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
|
138 |
+
# Copyright (c) 2021 Microsoft
|
139 |
+
# Licensed under The MIT License [see LICENSE for details]
|
140 |
+
# Based on fairseq code bases
|
141 |
+
# https://github.com/pytorch/fairseq
|
142 |
+
# --------------------------------------------------------
|
143 |
+
import math
|
144 |
+
import logging
|
145 |
+
from typing import List, Optional, Tuple
|
146 |
+
|
147 |
+
import numpy as np
|
148 |
+
from torch.nn import LayerNorm
|
149 |
+
import copy
|
150 |
+
from typing import Optional
|
151 |
+
|
152 |
+
import torch
|
153 |
+
import torch.nn.functional as F
|
154 |
+
from torch import nn, Tensor
|
155 |
+
|
156 |
+
|
157 |
+
class PositionEmbeddingSine(nn.Module):
|
158 |
+
"""
|
159 |
+
This is a more standard version of the position embedding, very similar to the one
|
160 |
+
used by the Attention is all you need paper, generalized to work on images. (To 1D sequences)
|
161 |
+
"""
|
162 |
+
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
|
163 |
+
super().__init__()
|
164 |
+
self.num_pos_feats = num_pos_feats
|
165 |
+
self.temperature = temperature
|
166 |
+
self.normalize = normalize
|
167 |
+
if scale is not None and normalize is False:
|
168 |
+
raise ValueError("normalize should be True if scale is passed")
|
169 |
+
if scale is None:
|
170 |
+
scale = 2 * math.pi
|
171 |
+
self.scale = scale
|
172 |
+
|
173 |
+
def forward(self, x, mask):
|
174 |
+
"""
|
175 |
+
Args:
|
176 |
+
x: torch.tensor, (batch_size, L, d)
|
177 |
+
mask: torch.tensor, (batch_size, L), with 1 as valid
|
178 |
+
|
179 |
+
Returns:
|
180 |
+
|
181 |
+
"""
|
182 |
+
assert mask is not None
|
183 |
+
x_embed = mask.cumsum(1, dtype=torch.float32) # (bsz, L)
|
184 |
+
if self.normalize:
|
185 |
+
eps = 1e-6
|
186 |
+
x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale
|
187 |
+
|
188 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
189 |
+
# dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
190 |
+
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='trunc') / self.num_pos_feats)
|
191 |
+
pos_x = x_embed[:, :, None] / dim_t # (bsz, L, num_pos_feats)
|
192 |
+
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) # (bsz, L, num_pos_feats*2)
|
193 |
+
# import ipdb; ipdb.set_trace()
|
194 |
+
return pos_x # .permute(0, 2, 1) # (bsz, num_pos_feats*2, L)
|
195 |
+
|
196 |
+
def build_position_encoding(x):
|
197 |
+
N_steps = x
|
198 |
+
pos_embed = PositionEmbeddingSine(N_steps, normalize=True)
|
199 |
+
|
200 |
+
return pos_embed
|
201 |
+
|
202 |
+
|
203 |
+
class Transformer(nn.Module):
|
204 |
+
|
205 |
+
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
|
206 |
+
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
|
207 |
+
activation="relu", normalize_before=False):
|
208 |
+
super().__init__()
|
209 |
+
|
210 |
+
# TransformerEncoderLayer
|
211 |
+
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
|
212 |
+
dropout, activation, normalize_before)
|
213 |
+
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
214 |
+
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
215 |
+
|
216 |
+
self._reset_parameters()
|
217 |
+
|
218 |
+
self.d_model = d_model
|
219 |
+
self.nhead = nhead
|
220 |
+
|
221 |
+
def _reset_parameters(self):
|
222 |
+
for p in self.parameters():
|
223 |
+
if p.dim() > 1:
|
224 |
+
nn.init.xavier_uniform_(p)
|
225 |
+
|
226 |
+
def forward(self, src, mask, att_mask, pos_embed):
|
227 |
+
"""
|
228 |
+
Args:
|
229 |
+
src: (batch_size, L, d)
|
230 |
+
mask: (batch_size, L)
|
231 |
+
query_embed: (#queries, d)
|
232 |
+
pos_embed: (batch_size, L, d) the same as src
|
233 |
+
|
234 |
+
Returns:
|
235 |
+
|
236 |
+
"""
|
237 |
+
src = src.permute(1, 0, 2) # (L, batch_size, d)
|
238 |
+
pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d)
|
239 |
+
|
240 |
+
memory = self.encoder(
|
241 |
+
src,
|
242 |
+
mask=att_mask,
|
243 |
+
src_key_padding_mask=mask,
|
244 |
+
pos=pos_embed
|
245 |
+
)
|
246 |
+
|
247 |
+
memory = memory.transpose(0, 1)
|
248 |
+
return memory
|
249 |
+
|
250 |
+
|
251 |
+
class TransformerEncoder(nn.Module):
|
252 |
+
|
253 |
+
def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False):
|
254 |
+
super().__init__()
|
255 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
256 |
+
self.num_layers = num_layers
|
257 |
+
self.norm = norm
|
258 |
+
self.return_intermediate = return_intermediate
|
259 |
+
|
260 |
+
def forward(self, src,
|
261 |
+
mask: Optional[Tensor] = None,
|
262 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
263 |
+
pos: Optional[Tensor] = None):
|
264 |
+
output = src
|
265 |
+
|
266 |
+
intermediate = []
|
267 |
+
|
268 |
+
for layer in self.layers:
|
269 |
+
output = layer(output, src_mask=mask,
|
270 |
+
src_key_padding_mask=src_key_padding_mask, pos=pos)
|
271 |
+
if self.return_intermediate:
|
272 |
+
intermediate.append(output)
|
273 |
+
|
274 |
+
if self.norm is not None:
|
275 |
+
output = self.norm(output)
|
276 |
+
|
277 |
+
if self.return_intermediate:
|
278 |
+
return torch.stack(intermediate)
|
279 |
+
|
280 |
+
return output
|
281 |
+
|
282 |
+
|
283 |
+
class TransformerEncoderLayer(nn.Module):
|
284 |
+
|
285 |
+
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
286 |
+
activation="relu", normalize_before=False):
|
287 |
+
super().__init__()
|
288 |
+
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
289 |
+
# Implementation of Feedforward model
|
290 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
291 |
+
self.dropout = nn.Dropout(dropout)
|
292 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
293 |
+
|
294 |
+
self.norm1 = nn.LayerNorm(d_model)
|
295 |
+
self.norm2 = nn.LayerNorm(d_model)
|
296 |
+
self.dropout1 = nn.Dropout(dropout)
|
297 |
+
self.dropout2 = nn.Dropout(dropout)
|
298 |
+
|
299 |
+
self.activation = _get_activation_fn(activation)
|
300 |
+
self.normalize_before = normalize_before
|
301 |
+
|
302 |
+
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
303 |
+
return tensor if pos is None else tensor + pos
|
304 |
+
|
305 |
+
def forward_post(self,
|
306 |
+
src,
|
307 |
+
src_mask: Optional[Tensor] = None,
|
308 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
309 |
+
pos: Optional[Tensor] = None):
|
310 |
+
q = k = self.with_pos_embed(src, pos)
|
311 |
+
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
|
312 |
+
key_padding_mask=src_key_padding_mask)[0]
|
313 |
+
src = src + self.dropout1(src2)
|
314 |
+
src = self.norm1(src)
|
315 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
316 |
+
src = src + self.dropout2(src2)
|
317 |
+
src = self.norm2(src)
|
318 |
+
return src
|
319 |
+
|
320 |
+
def forward_pre(self, src,
|
321 |
+
src_mask: Optional[Tensor] = None,
|
322 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
323 |
+
pos: Optional[Tensor] = None):
|
324 |
+
src2 = self.norm1(src)
|
325 |
+
q = k = self.with_pos_embed(src2, pos)
|
326 |
+
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
|
327 |
+
key_padding_mask=src_key_padding_mask)[0]
|
328 |
+
src = src + self.dropout1(src2)
|
329 |
+
src2 = self.norm2(src)
|
330 |
+
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
331 |
+
src = src + self.dropout2(src2)
|
332 |
+
return src
|
333 |
+
|
334 |
+
def forward(self, src,
|
335 |
+
src_mask: Optional[Tensor] = None,
|
336 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
337 |
+
pos: Optional[Tensor] = None):
|
338 |
+
if self.normalize_before:
|
339 |
+
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
340 |
+
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
341 |
+
|
342 |
+
|
343 |
+
def _get_clones(module, N):
|
344 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
345 |
+
|
346 |
+
|
347 |
+
def build_transformer(x):
|
348 |
+
return Transformer(
|
349 |
+
d_model=x,
|
350 |
+
dropout=0.5,
|
351 |
+
nhead=8,
|
352 |
+
dim_feedforward=1024,
|
353 |
+
num_encoder_layers=2,
|
354 |
+
normalize_before=True,
|
355 |
+
)
|
356 |
+
|
357 |
+
|
358 |
+
def _get_activation_fn(activation):
|
359 |
+
"""Return an activation function given a string"""
|
360 |
+
if activation == "relu":
|
361 |
+
return F.relu
|
362 |
+
if activation == "gelu":
|
363 |
+
return F.gelu
|
364 |
+
if activation == "glu":
|
365 |
+
return F.glu
|
366 |
+
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
367 |
+
|
368 |
+
|
369 |
+
|
370 |
+
class EMA:
|
371 |
+
def __init__(self, model, decay):
|
372 |
+
self.decay = decay
|
373 |
+
self.shadow = {}
|
374 |
+
self.original = {}
|
375 |
+
|
376 |
+
# Register model parameters
|
377 |
+
for name, param in model.named_parameters():
|
378 |
+
if param.requires_grad:
|
379 |
+
self.shadow[name] = param.data.clone()
|
380 |
+
|
381 |
+
def __call__(self, model, num_updates=99999):
|
382 |
+
decay = min(self.decay, (1.0 + num_updates) / (10.0 + num_updates))
|
383 |
+
for name, param in model.named_parameters():
|
384 |
+
if param.requires_grad:
|
385 |
+
assert name in self.shadow
|
386 |
+
new_average = \
|
387 |
+
(1.0 - decay) * param.data + decay * self.shadow[name]
|
388 |
+
self.shadow[name] = new_average.clone()
|
389 |
+
|
390 |
+
def assign(self, model):
|
391 |
+
for name, param in model.named_parameters():
|
392 |
+
if param.requires_grad:
|
393 |
+
assert name in self.shadow
|
394 |
+
self.original[name] = param.data.clone()
|
395 |
+
param.data = self.shadow[name]
|
396 |
+
|
397 |
+
def resume(self, model):
|
398 |
+
for name, param in model.named_parameters():
|
399 |
+
if param.requires_grad:
|
400 |
+
assert name in self.shadow
|
401 |
+
param.data = self.original[name]
|
402 |
+
|
403 |
+
|
404 |
+
def MLP(channels):
|
405 |
+
return Sequential(*[
|
406 |
+
Sequential(Linear(channels[i - 1], channels[i]), SiLU())
|
407 |
+
for i in range(1, len(channels))])
|
408 |
+
|
409 |
+
|
410 |
+
class Res(nn.Module):
|
411 |
+
def __init__(self, dim):
|
412 |
+
super(Res, self).__init__()
|
413 |
+
|
414 |
+
self.mlp = MLP([dim, dim, dim])
|
415 |
+
|
416 |
+
def forward(self, m):
|
417 |
+
m1 = self.mlp(m)
|
418 |
+
m_out = m1 + m
|
419 |
+
return m_out
|
420 |
+
|
421 |
+
|
422 |
+
def compute_idx(pos, edge_index):
|
423 |
+
|
424 |
+
pos_i = pos[edge_index[0]]
|
425 |
+
pos_j = pos[edge_index[1]]
|
426 |
+
|
427 |
+
d_ij = torch.norm(abs(pos_j - pos_i), dim=-1, keepdim=False).unsqueeze(-1) + 1e-5
|
428 |
+
v_ji = (pos_i - pos_j) / d_ij
|
429 |
+
|
430 |
+
unique, counts = torch.unique(edge_index[0], sorted=True, return_counts=True) #Get central values
|
431 |
+
full_index = torch.arange(0, edge_index[0].size()[0]).cuda().int() #init full index
|
432 |
+
#print('full_index', full_index)
|
433 |
+
|
434 |
+
#Compute 1
|
435 |
+
repeat = torch.repeat_interleave(counts, counts)
|
436 |
+
counts_repeat1 = torch.repeat_interleave(full_index, repeat) #0,...,0,1,...,1,...
|
437 |
+
|
438 |
+
#Compute 2
|
439 |
+
split = torch.split(full_index, counts.tolist()) #split full index
|
440 |
+
index2 = list(edge_index[0].data.cpu().numpy()) #get repeat index
|
441 |
+
counts_repeat2 = torch.cat(itemgetter(*index2)(split), dim=0) #0,1,2,...,0,1,2,..
|
442 |
+
|
443 |
+
#Compute angle embeddings
|
444 |
+
v1 = v_ji[counts_repeat1.long()]
|
445 |
+
v2 = v_ji[counts_repeat2.long()]
|
446 |
+
|
447 |
+
angle = (v1*v2).sum(-1).unsqueeze(-1)
|
448 |
+
angle = torch.clamp(angle, min=-1.0, max=1.0) + 1e-6 + 1.0
|
449 |
+
|
450 |
+
return counts_repeat1.long(), counts_repeat2.long(), angle
|
451 |
+
|
452 |
+
|
453 |
+
def Jn(r, n):
|
454 |
+
return np.sqrt(np.pi / (2 * r)) * sp.jv(n + 0.5, r)
|
455 |
+
|
456 |
+
|
457 |
+
def Jn_zeros(n, k):
|
458 |
+
zerosj = np.zeros((n, k), dtype='float32')
|
459 |
+
zerosj[0] = np.arange(1, k + 1) * np.pi
|
460 |
+
points = np.arange(1, k + n) * np.pi
|
461 |
+
racines = np.zeros(k + n - 1, dtype='float32')
|
462 |
+
for i in range(1, n):
|
463 |
+
for j in range(k + n - 1 - i):
|
464 |
+
foo = brentq(Jn, points[j], points[j + 1], (i, ))
|
465 |
+
racines[j] = foo
|
466 |
+
points = racines
|
467 |
+
zerosj[i][:k] = racines[:k]
|
468 |
+
|
469 |
+
return zerosj
|
470 |
+
|
471 |
+
|
472 |
+
def spherical_bessel_formulas(n):
|
473 |
+
x = sym.symbols('x')
|
474 |
+
|
475 |
+
f = [sym.sin(x) / x]
|
476 |
+
a = sym.sin(x) / x
|
477 |
+
for i in range(1, n):
|
478 |
+
b = sym.diff(a, x) / x
|
479 |
+
f += [sym.simplify(b * (-x)**i)]
|
480 |
+
a = sym.simplify(b)
|
481 |
+
return f
|
482 |
+
|
483 |
+
|
484 |
+
def bessel_basis(n, k):
|
485 |
+
zeros = Jn_zeros(n, k)
|
486 |
+
normalizer = []
|
487 |
+
for order in range(n):
|
488 |
+
normalizer_tmp = []
|
489 |
+
for i in range(k):
|
490 |
+
normalizer_tmp += [0.5 * Jn(zeros[order, i], order + 1)**2]
|
491 |
+
normalizer_tmp = 1 / np.array(normalizer_tmp)**0.5
|
492 |
+
normalizer += [normalizer_tmp]
|
493 |
+
|
494 |
+
f = spherical_bessel_formulas(n)
|
495 |
+
x = sym.symbols('x')
|
496 |
+
bess_basis = []
|
497 |
+
for order in range(n):
|
498 |
+
bess_basis_tmp = []
|
499 |
+
for i in range(k):
|
500 |
+
bess_basis_tmp += [
|
501 |
+
sym.simplify(normalizer[order][i] *
|
502 |
+
f[order].subs(x, zeros[order, i] * x))
|
503 |
+
]
|
504 |
+
bess_basis += [bess_basis_tmp]
|
505 |
+
return bess_basis
|
506 |
+
|
507 |
+
|
508 |
+
def sph_harm_prefactor(k, m):
|
509 |
+
return ((2 * k + 1) * np.math.factorial(k - abs(m)) /
|
510 |
+
(4 * np.pi * np.math.factorial(k + abs(m))))**0.5
|
511 |
+
|
512 |
+
|
513 |
+
def associated_legendre_polynomials(k, zero_m_only=True):
|
514 |
+
z = sym.symbols('z')
|
515 |
+
P_l_m = [[0] * (j + 1) for j in range(k)]
|
516 |
+
|
517 |
+
P_l_m[0][0] = 1
|
518 |
+
if k > 0:
|
519 |
+
P_l_m[1][0] = z
|
520 |
+
|
521 |
+
for j in range(2, k):
|
522 |
+
P_l_m[j][0] = sym.simplify(((2 * j - 1) * z * P_l_m[j - 1][0] -
|
523 |
+
(j - 1) * P_l_m[j - 2][0]) / j)
|
524 |
+
if not zero_m_only:
|
525 |
+
for i in range(1, k):
|
526 |
+
P_l_m[i][i] = sym.simplify((1 - 2 * i) * P_l_m[i - 1][i - 1])
|
527 |
+
if i + 1 < k:
|
528 |
+
P_l_m[i + 1][i] = sym.simplify(
|
529 |
+
(2 * i + 1) * z * P_l_m[i][i])
|
530 |
+
for j in range(i + 2, k):
|
531 |
+
P_l_m[j][i] = sym.simplify(
|
532 |
+
((2 * j - 1) * z * P_l_m[j - 1][i] -
|
533 |
+
(i + j - 1) * P_l_m[j - 2][i]) / (j - i))
|
534 |
+
|
535 |
+
return P_l_m
|
536 |
+
|
537 |
+
|
538 |
+
def real_sph_harm(k, zero_m_only=True, spherical_coordinates=True):
|
539 |
+
if not zero_m_only:
|
540 |
+
S_m = [0]
|
541 |
+
C_m = [1]
|
542 |
+
for i in range(1, k):
|
543 |
+
x = sym.symbols('x')
|
544 |
+
y = sym.symbols('y')
|
545 |
+
S_m += [x * S_m[i - 1] + y * C_m[i - 1]]
|
546 |
+
C_m += [x * C_m[i - 1] - y * S_m[i - 1]]
|
547 |
+
|
548 |
+
P_l_m = associated_legendre_polynomials(k, zero_m_only)
|
549 |
+
if spherical_coordinates:
|
550 |
+
theta = sym.symbols('theta')
|
551 |
+
z = sym.symbols('z')
|
552 |
+
for i in range(len(P_l_m)):
|
553 |
+
for j in range(len(P_l_m[i])):
|
554 |
+
if type(P_l_m[i][j]) != int:
|
555 |
+
P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta))
|
556 |
+
if not zero_m_only:
|
557 |
+
phi = sym.symbols('phi')
|
558 |
+
for i in range(len(S_m)):
|
559 |
+
S_m[i] = S_m[i].subs(x,
|
560 |
+
sym.sin(theta) * sym.cos(phi)).subs(
|
561 |
+
y,
|
562 |
+
sym.sin(theta) * sym.sin(phi))
|
563 |
+
for i in range(len(C_m)):
|
564 |
+
C_m[i] = C_m[i].subs(x,
|
565 |
+
sym.sin(theta) * sym.cos(phi)).subs(
|
566 |
+
y,
|
567 |
+
sym.sin(theta) * sym.sin(phi))
|
568 |
+
|
569 |
+
Y_func_l_m = [['0'] * (2 * j + 1) for j in range(k)]
|
570 |
+
for i in range(k):
|
571 |
+
Y_func_l_m[i][0] = sym.simplify(sph_harm_prefactor(i, 0) * P_l_m[i][0])
|
572 |
+
|
573 |
+
if not zero_m_only:
|
574 |
+
for i in range(1, k):
|
575 |
+
for j in range(1, i + 1):
|
576 |
+
Y_func_l_m[i][j] = sym.simplify(
|
577 |
+
2**0.5 * sph_harm_prefactor(i, j) * C_m[j] * P_l_m[i][j])
|
578 |
+
for i in range(1, k):
|
579 |
+
for j in range(1, i + 1):
|
580 |
+
Y_func_l_m[i][-j] = sym.simplify(
|
581 |
+
2**0.5 * sph_harm_prefactor(i, -j) * S_m[j] * P_l_m[i][j])
|
582 |
+
|
583 |
+
return Y_func_l_m
|
584 |
+
|
585 |
+
|
586 |
+
class BesselBasisLayer(torch.nn.Module):
|
587 |
+
def __init__(self, num_radial, cutoff, envelope_exponent=6):
|
588 |
+
super(BesselBasisLayer, self).__init__()
|
589 |
+
self.cutoff = cutoff
|
590 |
+
self.envelope = Envelope(envelope_exponent)
|
591 |
+
|
592 |
+
self.freq = torch.nn.Parameter(torch.Tensor(num_radial))
|
593 |
+
|
594 |
+
self.reset_parameters()
|
595 |
+
|
596 |
+
def reset_parameters(self):
|
597 |
+
# 代替in-place操作
|
598 |
+
# torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
|
599 |
+
# self.freq = torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI)
|
600 |
+
|
601 |
+
# 计算临时张量并存储到 tmp_tensor 变量中
|
602 |
+
tmp_tensor = torch.arange(1, self.freq.numel() + 1, dtype=self.freq.dtype, device=self.freq.device)
|
603 |
+
|
604 |
+
# 使用乘法函数实现数乘并将结果保存到 self.freq 张量上
|
605 |
+
self.freq.data = torch.mul(tmp_tensor, PI)
|
606 |
+
|
607 |
+
def forward(self, dist):
|
608 |
+
dist = dist.unsqueeze(-1) / self.cutoff
|
609 |
+
return self.envelope(dist) * (self.freq * dist).sin()
|
610 |
+
|
611 |
+
|
612 |
+
class SiLU(nn.Module):
|
613 |
+
def __init__(self):
|
614 |
+
super().__init__()
|
615 |
+
|
616 |
+
def forward(self, input):
|
617 |
+
return silu(input)
|
618 |
+
|
619 |
+
|
620 |
+
def silu(input):
|
621 |
+
return input * torch.sigmoid(input)
|
622 |
+
|
623 |
+
|
624 |
+
class Envelope(torch.nn.Module):
|
625 |
+
def __init__(self, exponent):
|
626 |
+
super(Envelope, self).__init__()
|
627 |
+
self.p = exponent
|
628 |
+
self.a = -(self.p + 1) * (self.p + 2) / 2
|
629 |
+
self.b = self.p * (self.p + 2)
|
630 |
+
self.c = -self.p * (self.p + 1) / 2
|
631 |
+
|
632 |
+
def forward(self, x):
|
633 |
+
p, a, b, c = self.p, self.a, self.b, self.c
|
634 |
+
x_pow_p0 = x.pow(p)
|
635 |
+
x_pow_p1 = x_pow_p0 * x
|
636 |
+
env_val = 1. / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p1 * x
|
637 |
+
|
638 |
+
zero = torch.zeros_like(x)
|
639 |
+
return torch.where(x < 1, env_val, zero)
|
640 |
+
|
641 |
+
|
642 |
+
class SphericalBasisLayer(torch.nn.Module):
|
643 |
+
def __init__(self, num_spherical, num_radial, cutoff=5.0,
|
644 |
+
envelope_exponent=5):
|
645 |
+
super(SphericalBasisLayer, self).__init__()
|
646 |
+
assert num_radial <= 64
|
647 |
+
self.num_spherical = num_spherical
|
648 |
+
self.num_radial = num_radial
|
649 |
+
self.cutoff = cutoff
|
650 |
+
self.envelope = Envelope(envelope_exponent)
|
651 |
+
|
652 |
+
bessel_forms = bessel_basis(num_spherical, num_radial)
|
653 |
+
sph_harm_forms = real_sph_harm(num_spherical)
|
654 |
+
self.sph_funcs = []
|
655 |
+
self.bessel_funcs = []
|
656 |
+
|
657 |
+
x, theta = sym.symbols('x theta')
|
658 |
+
modules = {'sin': torch.sin, 'cos': torch.cos}
|
659 |
+
for i in range(num_spherical):
|
660 |
+
if i == 0:
|
661 |
+
sph1 = sym.lambdify([theta], sph_harm_forms[i][0], modules)(0)
|
662 |
+
self.sph_funcs.append(lambda x: torch.zeros_like(x) + sph1)
|
663 |
+
else:
|
664 |
+
sph = sym.lambdify([theta], sph_harm_forms[i][0], modules)
|
665 |
+
self.sph_funcs.append(sph)
|
666 |
+
for j in range(num_radial):
|
667 |
+
bessel = sym.lambdify([x], bessel_forms[i][j], modules)
|
668 |
+
self.bessel_funcs.append(bessel)
|
669 |
+
|
670 |
+
def forward(self, dist, angle, idx_kj):
|
671 |
+
dist = dist / self.cutoff
|
672 |
+
rbf = torch.stack([f(dist) for f in self.bessel_funcs], dim=1)
|
673 |
+
rbf = self.envelope(dist).unsqueeze(-1) * rbf
|
674 |
+
|
675 |
+
cbf = torch.stack([f(angle) for f in self.sph_funcs], dim=1)
|
676 |
+
|
677 |
+
n, k = self.num_spherical, self.num_radial
|
678 |
+
out = (rbf[idx_kj].view(-1, n, k) * cbf.view(-1, n, 1)).view(-1, n * k)
|
679 |
+
return out
|
680 |
+
|
681 |
+
|
682 |
+
|
683 |
+
msg_special_args = set([
|
684 |
+
'edge_index',
|
685 |
+
'edge_index_i',
|
686 |
+
'edge_index_j',
|
687 |
+
'size',
|
688 |
+
'size_i',
|
689 |
+
'size_j',
|
690 |
+
])
|
691 |
+
|
692 |
+
aggr_special_args = set([
|
693 |
+
'index',
|
694 |
+
'dim_size',
|
695 |
+
])
|
696 |
+
|
697 |
+
update_special_args = set([])
|
698 |
+
|
699 |
+
|
700 |
+
class MessagePassing(torch.nn.Module):
|
701 |
+
r"""Base class for creating message passing layers
|
702 |
+
|
703 |
+
.. math::
|
704 |
+
\mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i,
|
705 |
+
\square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}}
|
706 |
+
\left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{i,j}\right) \right),
|
707 |
+
|
708 |
+
where :math:`\square` denotes a differentiable, permutation invariant
|
709 |
+
function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}`
|
710 |
+
and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as
|
711 |
+
MLPs.
|
712 |
+
See `here <https://pytorch-geometric.readthedocs.io/en/latest/notes/
|
713 |
+
create_gnn.html>`__ for the accompanying tutorial.
|
714 |
+
|
715 |
+
Args:
|
716 |
+
aggr (string, optional): The aggregation scheme to use
|
717 |
+
(:obj:`"add"`, :obj:`"mean"` or :obj:`"max"`).
|
718 |
+
(default: :obj:`"add"`)
|
719 |
+
flow (string, optional): The flow direction of message passing
|
720 |
+
(:obj:`"source_to_target"` or :obj:`"target_to_source"`).
|
721 |
+
(default: :obj:`"source_to_target"`)
|
722 |
+
node_dim (int, optional): The axis along which to propagate.
|
723 |
+
(default: :obj:`0`)
|
724 |
+
"""
|
725 |
+
def __init__(self, aggr='add', flow='target_to_source', node_dim=0):
|
726 |
+
super(MessagePassing, self).__init__()
|
727 |
+
|
728 |
+
self.aggr = aggr
|
729 |
+
assert self.aggr in ['add', 'mean', 'max']
|
730 |
+
|
731 |
+
self.flow = flow
|
732 |
+
assert self.flow in ['source_to_target', 'target_to_source']
|
733 |
+
|
734 |
+
self.node_dim = node_dim
|
735 |
+
assert self.node_dim >= 0
|
736 |
+
|
737 |
+
self.__msg_params__ = inspect.signature(self.message).parameters
|
738 |
+
self.__msg_params__ = OrderedDict(self.__msg_params__)
|
739 |
+
|
740 |
+
self.__aggr_params__ = inspect.signature(self.aggregate).parameters
|
741 |
+
self.__aggr_params__ = OrderedDict(self.__aggr_params__)
|
742 |
+
self.__aggr_params__.popitem(last=False)
|
743 |
+
|
744 |
+
self.__update_params__ = inspect.signature(self.update).parameters
|
745 |
+
self.__update_params__ = OrderedDict(self.__update_params__)
|
746 |
+
self.__update_params__.popitem(last=False)
|
747 |
+
|
748 |
+
msg_args = set(self.__msg_params__.keys()) - msg_special_args
|
749 |
+
aggr_args = set(self.__aggr_params__.keys()) - aggr_special_args
|
750 |
+
update_args = set(self.__update_params__.keys()) - update_special_args
|
751 |
+
|
752 |
+
self.__args__ = set().union(msg_args, aggr_args, update_args)
|
753 |
+
|
754 |
+
def __set_size__(self, size, index, tensor):
|
755 |
+
if not torch.is_tensor(tensor):
|
756 |
+
pass
|
757 |
+
elif size[index] is None:
|
758 |
+
size[index] = tensor.size(self.node_dim)
|
759 |
+
elif size[index] != tensor.size(self.node_dim):
|
760 |
+
raise ValueError(
|
761 |
+
(f'Encountered node tensor with size '
|
762 |
+
f'{tensor.size(self.node_dim)} in dimension {self.node_dim}, '
|
763 |
+
f'but expected size {size[index]}.'))
|
764 |
+
|
765 |
+
def __collect__(self, edge_index, size, kwargs):
|
766 |
+
i, j = (0, 1) if self.flow == "target_to_source" else (1, 0)
|
767 |
+
ij = {"_i": i, "_j": j}
|
768 |
+
|
769 |
+
out = {}
|
770 |
+
for arg in self.__args__:
|
771 |
+
if arg[-2:] not in ij.keys():
|
772 |
+
out[arg] = kwargs.get(arg, inspect.Parameter.empty)
|
773 |
+
else:
|
774 |
+
idx = ij[arg[-2:]]
|
775 |
+
data = kwargs.get(arg[:-2], inspect.Parameter.empty)
|
776 |
+
|
777 |
+
if data is inspect.Parameter.empty:
|
778 |
+
out[arg] = data
|
779 |
+
continue
|
780 |
+
|
781 |
+
if isinstance(data, tuple) or isinstance(data, list):
|
782 |
+
assert len(data) == 2
|
783 |
+
self.__set_size__(size, 1 - idx, data[1 - idx])
|
784 |
+
data = data[idx]
|
785 |
+
|
786 |
+
if not torch.is_tensor(data):
|
787 |
+
out[arg] = data
|
788 |
+
continue
|
789 |
+
|
790 |
+
self.__set_size__(size, idx, data)
|
791 |
+
out[arg] = data.index_select(self.node_dim, edge_index[idx])
|
792 |
+
|
793 |
+
size[0] = size[1] if size[0] is None else size[0]
|
794 |
+
size[1] = size[0] if size[1] is None else size[1]
|
795 |
+
|
796 |
+
# Add special message arguments.
|
797 |
+
out['edge_index'] = edge_index
|
798 |
+
out['edge_index_i'] = edge_index[i]
|
799 |
+
out['edge_index_j'] = edge_index[j]
|
800 |
+
out['size'] = size
|
801 |
+
out['size_i'] = size[i]
|
802 |
+
out['size_j'] = size[j]
|
803 |
+
|
804 |
+
# Add special aggregate arguments.
|
805 |
+
out['index'] = out['edge_index_i']
|
806 |
+
out['dim_size'] = out['size_i']
|
807 |
+
|
808 |
+
return out
|
809 |
+
|
810 |
+
def __distribute__(self, params, kwargs):
|
811 |
+
out = {}
|
812 |
+
for key, param in params.items():
|
813 |
+
data = kwargs[key]
|
814 |
+
if data is inspect.Parameter.empty:
|
815 |
+
if param.default is inspect.Parameter.empty:
|
816 |
+
raise TypeError(f'Required parameter {key} is empty.')
|
817 |
+
data = param.default
|
818 |
+
out[key] = data
|
819 |
+
return out
|
820 |
+
|
821 |
+
def propagate(self, edge_index, size=None, **kwargs):
|
822 |
+
r"""The initial call to start propagating messages.
|
823 |
+
|
824 |
+
Args:
|
825 |
+
edge_index (Tensor): The indices of a general (sparse) assignment
|
826 |
+
matrix with shape :obj:`[N, M]` (can be directed or
|
827 |
+
undirected).
|
828 |
+
size (list or tuple, optional): The size :obj:`[N, M]` of the
|
829 |
+
assignment matrix. If set to :obj:`None`, the size will be
|
830 |
+
automatically inferred and assumed to be quadratic.
|
831 |
+
(default: :obj:`None`)
|
832 |
+
**kwargs: Any additional data which is needed to construct and
|
833 |
+
aggregate messages, and to update node embeddings.
|
834 |
+
"""
|
835 |
+
|
836 |
+
size = [None, None] if size is None else size
|
837 |
+
size = [size, size] if isinstance(size, int) else size
|
838 |
+
size = size.tolist() if torch.is_tensor(size) else size
|
839 |
+
size = list(size) if isinstance(size, tuple) else size
|
840 |
+
assert isinstance(size, list)
|
841 |
+
assert len(size) == 2
|
842 |
+
|
843 |
+
kwargs = self.__collect__(edge_index, size, kwargs)
|
844 |
+
|
845 |
+
msg_kwargs = self.__distribute__(self.__msg_params__, kwargs)
|
846 |
+
|
847 |
+
m = self.message(**msg_kwargs)
|
848 |
+
aggr_kwargs = self.__distribute__(self.__aggr_params__, kwargs)
|
849 |
+
m = self.aggregate(m, **aggr_kwargs)
|
850 |
+
|
851 |
+
update_kwargs = self.__distribute__(self.__update_params__, kwargs)
|
852 |
+
m = self.update(m, **update_kwargs)
|
853 |
+
|
854 |
+
return m
|
855 |
+
|
856 |
+
def message(self, x_j): # pragma: no cover
|
857 |
+
r"""Constructs messages to node :math:`i` in analogy to
|
858 |
+
:math:`\phi_{\mathbf{\Theta}}` for each edge in
|
859 |
+
:math:`(j,i) \in \mathcal{E}` if :obj:`flow="source_to_target"` and
|
860 |
+
:math:`(i,j) \in \mathcal{E}` if :obj:`flow="target_to_source"`.
|
861 |
+
Can take any argument which was initially passed to :meth:`propagate`.
|
862 |
+
In addition, tensors passed to :meth:`propagate` can be mapped to the
|
863 |
+
respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or
|
864 |
+
:obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`.
|
865 |
+
"""
|
866 |
+
|
867 |
+
return x_j
|
868 |
+
|
869 |
+
def aggregate(self, inputs, index, dim_size): # pragma: no cover
|
870 |
+
r"""Aggregates messages from neighbors as
|
871 |
+
:math:`\square_{j \in \mathcal{N}(i)}`.
|
872 |
+
|
873 |
+
By default, delegates call to scatter functions that support
|
874 |
+
"add", "mean" and "max" operations specified in :meth:`__init__` by
|
875 |
+
the :obj:`aggr` argument.
|
876 |
+
"""
|
877 |
+
|
878 |
+
return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
|
879 |
+
|
880 |
+
def update(self, inputs): # pragma: no cover
|
881 |
+
r"""Updates node embeddings in analogy to
|
882 |
+
:math:`\gamma_{\mathbf{\Theta}}` for each node
|
883 |
+
:math:`i \in \mathcal{V}`.
|
884 |
+
Takes in the output of aggregation as first argument and any argument
|
885 |
+
which was initially passed to :meth:`propagate`.
|
886 |
+
"""
|
887 |
+
|
888 |
+
return inputs
|
889 |
+
|
890 |
+
class TransMXMNet(nn.Module):
|
891 |
+
def __init__(self, dim=128, n_layer=6, cutoff=5.0, num_spherical=7, num_radial=6, envelope_exponent=5):
|
892 |
+
super(TransMXMNet, self).__init__()
|
893 |
+
|
894 |
+
self.dim = dim
|
895 |
+
self.n_layer = n_layer
|
896 |
+
self.cutoff = cutoff
|
897 |
+
|
898 |
+
self.embeddings = nn.Parameter(torch.ones((5, self.dim)))
|
899 |
+
|
900 |
+
self.rbf_l = BesselBasisLayer(16, 5, envelope_exponent)
|
901 |
+
self.rbf_g = BesselBasisLayer(16, self.cutoff, envelope_exponent)
|
902 |
+
self.sbf = SphericalBasisLayer(num_spherical, num_radial, 5, envelope_exponent)
|
903 |
+
|
904 |
+
self.rbf_g_mlp = MLP([16, self.dim])
|
905 |
+
self.rbf_l_mlp = MLP([16, self.dim])
|
906 |
+
|
907 |
+
self.sbf_1_mlp = MLP([num_spherical * num_radial, self.dim])
|
908 |
+
self.sbf_2_mlp = MLP([num_spherical * num_radial, self.dim])
|
909 |
+
|
910 |
+
self.global_layers = torch.nn.ModuleList()
|
911 |
+
for layer in range(self.n_layer):
|
912 |
+
self.global_layers.append(Global_MP(self.dim))
|
913 |
+
|
914 |
+
self.local_layers = torch.nn.ModuleList()
|
915 |
+
for layer in range(self.n_layer):
|
916 |
+
self.local_layers.append(Local_MP(self.dim))
|
917 |
+
|
918 |
+
self.pos_embed = build_position_encoding(self.dim)
|
919 |
+
self.transformer = build_transformer(self.dim)
|
920 |
+
|
921 |
+
self.init()
|
922 |
+
|
923 |
+
def init(self):
|
924 |
+
stdv = math.sqrt(3)
|
925 |
+
self.embeddings.data.uniform_(-stdv, stdv)
|
926 |
+
|
927 |
+
def indices(self, edge_index, num_nodes):
|
928 |
+
row, col = edge_index
|
929 |
+
|
930 |
+
value = torch.arange(row.size(0), device=row.device)
|
931 |
+
adj_t = SparseTensor(row=col, col=row, value=value,
|
932 |
+
sparse_sizes=(num_nodes, num_nodes))
|
933 |
+
|
934 |
+
#Compute the node indices for two-hop angles
|
935 |
+
adj_t_row = adj_t[row]
|
936 |
+
num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long)
|
937 |
+
|
938 |
+
idx_i = col.repeat_interleave(num_triplets)
|
939 |
+
idx_j = row.repeat_interleave(num_triplets)
|
940 |
+
idx_k = adj_t_row.storage.col()
|
941 |
+
mask = idx_i != idx_k
|
942 |
+
idx_i_1, idx_j, idx_k = idx_i[mask], idx_j[mask], idx_k[mask]
|
943 |
+
|
944 |
+
idx_kj = adj_t_row.storage.value()[mask]
|
945 |
+
idx_ji_1 = adj_t_row.storage.row()[mask]
|
946 |
+
|
947 |
+
#Compute the node indices for one-hop angles
|
948 |
+
adj_t_col = adj_t[col]
|
949 |
+
|
950 |
+
num_pairs = adj_t_col.set_value(None).sum(dim=1).to(torch.long)
|
951 |
+
idx_i_2 = row.repeat_interleave(num_pairs)
|
952 |
+
idx_j1 = col.repeat_interleave(num_pairs)
|
953 |
+
idx_j2 = adj_t_col.storage.col()
|
954 |
+
|
955 |
+
idx_ji_2 = adj_t_col.storage.row()
|
956 |
+
idx_jj = adj_t_col.storage.value()
|
957 |
+
|
958 |
+
return idx_i_1, idx_j, idx_k, idx_kj, idx_ji_1, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2
|
959 |
+
|
960 |
+
|
961 |
+
def forward_features(self, data):
|
962 |
+
x = data.x
|
963 |
+
edge_index = data.edge_index
|
964 |
+
pos = data.pos
|
965 |
+
batch = data.batch
|
966 |
+
# Initialize node embeddings
|
967 |
+
h = torch.index_select(self.embeddings, 0, x.long()).unsqueeze(0)
|
968 |
+
data_len = torch.bincount(batch)
|
969 |
+
# 计算相邻元素差异
|
970 |
+
diff_tensor = torch.diff(data_len)
|
971 |
+
indices = torch.nonzero(diff_tensor) + 1
|
972 |
+
indices[0] = 0
|
973 |
+
|
974 |
+
att_mask = torch.zeros(len(batch), len(batch)).cuda()
|
975 |
+
|
976 |
+
att_mask[indices[0]:, indices[0]:] = 1
|
977 |
+
i = 0
|
978 |
+
for i in range(0, h.size(0) - 1):
|
979 |
+
att_mask[indices[i]:indices[i + 1], indices[i]:indices[i + 1]] = 1
|
980 |
+
att_mask[indices[i]:indices[-1], indices[i]:indices[-1]] = 1
|
981 |
+
|
982 |
+
mask = torch.ones(1, len(batch)).bool().cuda()
|
983 |
+
|
984 |
+
pos_h = self.pos_embed(h, mask).cuda()
|
985 |
+
memory = self.transformer(h, ~mask, att_mask, pos_h)
|
986 |
+
h = memory.squeeze(0)
|
987 |
+
|
988 |
+
'''局部层--------------------------------------------------------------------------
|
989 |
+
'''
|
990 |
+
# Get the edges and pairwise distances in the local layer
|
991 |
+
edge_index_l, _ = remove_self_loops(edge_index) # 移除自环后的边索引
|
992 |
+
j_l, i_l = edge_index_l
|
993 |
+
dist_l = (pos[i_l] - pos[j_l]).pow(2).sum(dim=-1).sqrt() # 两个节点之间的距离
|
994 |
+
|
995 |
+
'''全局层--------------------------------------------------------------------------
|
996 |
+
'''
|
997 |
+
# Get the edges pairwise distances in the global layer
|
998 |
+
# radius函数返回两个节点之间的距离小于cutoff的边索引
|
999 |
+
row, col = radius(pos, pos, self.cutoff, batch, batch, max_num_neighbors=500)
|
1000 |
+
edge_index_g = torch.stack([row, col], dim=0)
|
1001 |
+
edge_index_g, _ = remove_self_loops(edge_index_g)
|
1002 |
+
j_g, i_g = edge_index_g
|
1003 |
+
dist_g = (pos[i_g] - pos[j_g]).pow(2).sum(dim=-1).sqrt()
|
1004 |
+
|
1005 |
+
# Compute the node indices for defining the angles
|
1006 |
+
idx_i_1, idx_j, idx_k, idx_kj, idx_ji, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2 = self.indices(edge_index_l, num_nodes=h.size(0))
|
1007 |
+
|
1008 |
+
# Compute the two-hop angles
|
1009 |
+
pos_ji_1, pos_kj = pos[idx_j] - pos[idx_i_1], pos[idx_k] - pos[idx_j]
|
1010 |
+
a = (pos_ji_1 * pos_kj).sum(dim=-1)
|
1011 |
+
b = torch.cross(pos_ji_1, pos_kj).norm(dim=-1)
|
1012 |
+
angle_1 = torch.atan2(b, a)
|
1013 |
+
|
1014 |
+
# Compute the one-hop angles
|
1015 |
+
pos_ji_2, pos_jj = pos[idx_j1] - pos[idx_i_2], pos[idx_j2] - pos[idx_j1]
|
1016 |
+
a = (pos_ji_2 * pos_jj).sum(dim=-1)
|
1017 |
+
b = torch.cross(pos_ji_2, pos_jj).norm(dim=-1)
|
1018 |
+
angle_2 = torch.atan2(b, a)
|
1019 |
+
|
1020 |
+
# Get the RBF and SBF embeddings
|
1021 |
+
rbf_g = self.rbf_g(dist_g)
|
1022 |
+
rbf_l = self.rbf_l(dist_l)
|
1023 |
+
sbf_1 = self.sbf(dist_l, angle_1, idx_kj)
|
1024 |
+
sbf_2 = self.sbf(dist_l, angle_2, idx_jj)
|
1025 |
+
|
1026 |
+
rbf_g = self.rbf_g_mlp(rbf_g)
|
1027 |
+
rbf_l = self.rbf_l_mlp(rbf_l)
|
1028 |
+
sbf_1 = self.sbf_1_mlp(sbf_1)
|
1029 |
+
sbf_2 = self.sbf_2_mlp(sbf_2)
|
1030 |
+
|
1031 |
+
# Perform the message passing schemes
|
1032 |
+
node_sum = 0
|
1033 |
+
|
1034 |
+
for layer in range(self.n_layer):
|
1035 |
+
h = self.global_layers[layer](h, rbf_g, edge_index_g)
|
1036 |
+
h, t = self.local_layers[layer](h, rbf_l, sbf_1, sbf_2, idx_kj, idx_ji, idx_jj, idx_ji_2, edge_index_l)
|
1037 |
+
node_sum += t
|
1038 |
+
|
1039 |
+
# Readout
|
1040 |
+
output = global_add_pool(node_sum, batch)
|
1041 |
+
return output.view(-1)
|
1042 |
+
|
1043 |
+
def loss(self, pred, label):
|
1044 |
+
pred, label = pred.reshape(-1), label.reshape(-1)
|
1045 |
+
return F.mse_loss(pred, label)
|
1046 |
+
|
1047 |
+
|
1048 |
+
class Global_MP(MessagePassing):
|
1049 |
+
|
1050 |
+
def __init__(self, dim):
|
1051 |
+
super(Global_MP, self).__init__()
|
1052 |
+
self.dim = dim
|
1053 |
+
|
1054 |
+
self.h_mlp = MLP([self.dim, self.dim])
|
1055 |
+
|
1056 |
+
self.res1 = Res(self.dim)
|
1057 |
+
self.res2 = Res(self.dim)
|
1058 |
+
self.res3 = Res(self.dim)
|
1059 |
+
self.mlp = MLP([self.dim, self.dim])
|
1060 |
+
|
1061 |
+
self.x_edge_mlp = MLP([self.dim * 3, self.dim])
|
1062 |
+
self.linear = nn.Linear(self.dim, self.dim, bias=False)
|
1063 |
+
|
1064 |
+
def forward(self, h, edge_attr, edge_index):
|
1065 |
+
edge_index, _ = add_self_loops(edge_index, num_nodes=h.size(0))
|
1066 |
+
|
1067 |
+
res_h = h
|
1068 |
+
|
1069 |
+
# Integrate the Cross Layer Mapping inside the Global Message Passing
|
1070 |
+
h = self.h_mlp(h)
|
1071 |
+
|
1072 |
+
# Message Passing operation
|
1073 |
+
h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)
|
1074 |
+
|
1075 |
+
# Update function f_u
|
1076 |
+
h = self.res1(h)
|
1077 |
+
h = self.mlp(h) + res_h
|
1078 |
+
h = self.res2(h)
|
1079 |
+
h = self.res3(h)
|
1080 |
+
|
1081 |
+
# Message Passing operation
|
1082 |
+
h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr)
|
1083 |
+
|
1084 |
+
return h
|
1085 |
+
|
1086 |
+
def message(self, x_i, x_j, edge_attr, edge_index, num_nodes):
|
1087 |
+
num_edge = edge_attr.size()[0]
|
1088 |
+
|
1089 |
+
x_edge = torch.cat((x_i[:num_edge], x_j[:num_edge], edge_attr), -1)
|
1090 |
+
x_edge = self.x_edge_mlp(x_edge)
|
1091 |
+
|
1092 |
+
x_j = torch.cat((self.linear(edge_attr) * x_edge, x_j[num_edge:]), dim=0)
|
1093 |
+
|
1094 |
+
return x_j
|
1095 |
+
|
1096 |
+
def update(self, aggr_out):
|
1097 |
+
return aggr_out
|
1098 |
+
|
1099 |
+
|
1100 |
+
class Local_MP(torch.nn.Module):
|
1101 |
+
def __init__(self, dim):
|
1102 |
+
super(Local_MP, self).__init__()
|
1103 |
+
self.dim = dim
|
1104 |
+
|
1105 |
+
self.h_mlp = MLP([self.dim, self.dim])
|
1106 |
+
|
1107 |
+
self.mlp_kj = MLP([3 * self.dim, self.dim])
|
1108 |
+
self.mlp_ji_1 = MLP([3 * self.dim, self.dim])
|
1109 |
+
self.mlp_ji_2 = MLP([self.dim, self.dim])
|
1110 |
+
self.mlp_jj = MLP([self.dim, self.dim])
|
1111 |
+
|
1112 |
+
self.mlp_sbf1 = MLP([self.dim, self.dim, self.dim])
|
1113 |
+
self.mlp_sbf2 = MLP([self.dim, self.dim, self.dim])
|
1114 |
+
self.lin_rbf1 = nn.Linear(self.dim, self.dim, bias=False)
|
1115 |
+
self.lin_rbf2 = nn.Linear(self.dim, self.dim, bias=False)
|
1116 |
+
|
1117 |
+
self.res1 = Res(self.dim)
|
1118 |
+
self.res2 = Res(self.dim)
|
1119 |
+
self.res3 = Res(self.dim)
|
1120 |
+
|
1121 |
+
self.lin_rbf_out = nn.Linear(self.dim, self.dim, bias=False)
|
1122 |
+
|
1123 |
+
self.h_mlp = MLP([self.dim, self.dim])
|
1124 |
+
|
1125 |
+
self.y_mlp = MLP([self.dim, self.dim, self.dim, self.dim])
|
1126 |
+
self.y_W = nn.Linear(self.dim, 1)
|
1127 |
+
|
1128 |
+
def forward(self, h, rbf, sbf1, sbf2, idx_kj, idx_ji_1, idx_jj, idx_ji_2, edge_index, num_nodes=None):
|
1129 |
+
res_h = h
|
1130 |
+
|
1131 |
+
# Integrate the Cross Layer Mapping inside the Local Message Passing
|
1132 |
+
h = self.h_mlp(h)
|
1133 |
+
|
1134 |
+
# Message Passing 1
|
1135 |
+
j, i = edge_index
|
1136 |
+
m = torch.cat([h[i], h[j], rbf], dim=-1)
|
1137 |
+
|
1138 |
+
m_kj = self.mlp_kj(m)
|
1139 |
+
m_kj = m_kj * self.lin_rbf1(rbf)
|
1140 |
+
m_kj = m_kj[idx_kj] * self.mlp_sbf1(sbf1)
|
1141 |
+
m_kj = scatter(m_kj, idx_ji_1, dim=0, dim_size=m.size(0), reduce='add')
|
1142 |
+
|
1143 |
+
m_ji_1 = self.mlp_ji_1(m)
|
1144 |
+
|
1145 |
+
m = m_ji_1 + m_kj
|
1146 |
+
|
1147 |
+
# Message Passing 2 (index jj denotes j'i in the main paper)
|
1148 |
+
m_jj = self.mlp_jj(m)
|
1149 |
+
m_jj = m_jj * self.lin_rbf2(rbf)
|
1150 |
+
m_jj = m_jj[idx_jj] * self.mlp_sbf2(sbf2)
|
1151 |
+
m_jj = scatter(m_jj, idx_ji_2, dim=0, dim_size=m.size(0), reduce='add')
|
1152 |
+
|
1153 |
+
m_ji_2 = self.mlp_ji_2(m)
|
1154 |
+
|
1155 |
+
m = m_ji_2 + m_jj
|
1156 |
+
|
1157 |
+
# Aggregation
|
1158 |
+
m = self.lin_rbf_out(rbf) * m
|
1159 |
+
h = scatter(m, i, dim=0, dim_size=h.size(0), reduce='add')
|
1160 |
+
|
1161 |
+
# Update function f_u
|
1162 |
+
h = self.res1(h)
|
1163 |
+
h = self.h_mlp(h) + res_h
|
1164 |
+
h = self.res2(h)
|
1165 |
+
h = self.res3(h)
|
1166 |
+
|
1167 |
+
# Output Module
|
1168 |
+
y = self.y_mlp(h)
|
1169 |
+
y = self.y_W(y)
|
1170 |
+
|
1171 |
+
return h, y
|
1172 |
+
|
1173 |
+
|
1174 |
+
# class MXMConfig(PretrainedConfig):
|
1175 |
+
# model_type = "gcn"
|
1176 |
+
#
|
1177 |
+
# def __init__(
|
1178 |
+
# self,
|
1179 |
+
# dim: int=128,
|
1180 |
+
# n_layer: int=6,
|
1181 |
+
# cutoff: float=5.0,
|
1182 |
+
# num_spherical: int=7,
|
1183 |
+
# num_radial: int=6,
|
1184 |
+
# envelope_exponent: int=5,
|
1185 |
+
#
|
1186 |
+
# smiles: List[str] = None,
|
1187 |
+
# processor_class: str = "SmilesProcessor",
|
1188 |
+
# **kwargs,
|
1189 |
+
# ):
|
1190 |
+
#
|
1191 |
+
# self.dim = dim # the dimension of input feature
|
1192 |
+
# self.n_layer = n_layer # the number of GCN layers
|
1193 |
+
# self.cutoff = cutoff # the cutoff distance for neighbor searching
|
1194 |
+
# self.num_spherical = num_spherical # the number of spherical harmonics
|
1195 |
+
# self.num_radial = num_radial # the number of radial basis
|
1196 |
+
# self.envelope_exponent = envelope_exponent # the envelope exponent
|
1197 |
+
#
|
1198 |
+
# self.smiles = smiles # process smiles
|
1199 |
+
# self.processor_class = processor_class
|
1200 |
+
#
|
1201 |
+
#
|
1202 |
+
# super().__init__(**kwargs)
|
1203 |
+
|
1204 |
+
|
1205 |
+
|
1206 |
+
class TransmxmModel(PreTrainedModel):
|
1207 |
+
config_class = TransmxmConfig
|
1208 |
+
|
1209 |
+
def __init__(self, config):
|
1210 |
+
super().__init__(config)
|
1211 |
+
|
1212 |
+
self.model = TransMXMNet(
|
1213 |
+
dim=config.dim,
|
1214 |
+
n_layer=config.n_layer,
|
1215 |
+
cutoff=config.cutoff,
|
1216 |
+
num_spherical=config.num_spherical,
|
1217 |
+
num_radial=config.num_radial,
|
1218 |
+
envelope_exponent=config.envelope_exponent,
|
1219 |
+
)
|
1220 |
+
self.process = SmilesDataset(
|
1221 |
+
smiles=config.smiles,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
self.mxm_model = None
|
1225 |
+
self.dataset = None
|
1226 |
+
self.output = None
|
1227 |
+
self.data_loader = None
|
1228 |
+
self.pred_data = None
|
1229 |
+
|
1230 |
+
def forward(self, tensor):
|
1231 |
+
return self.model.forward_features(tensor)
|
1232 |
+
|
1233 |
+
def SmilesProcessor(self, smiles):
|
1234 |
+
return self.process.get_data(smiles)
|
1235 |
+
|
1236 |
+
|
1237 |
+
def predict_smiles(self, smiles, device: str='cpu', result_dir: str='./', **kwargs):
|
1238 |
+
|
1239 |
+
|
1240 |
+
batch_size = kwargs.pop('batch_size', 1)
|
1241 |
+
shuffle = kwargs.pop('shuffle', False)
|
1242 |
+
drop_last = kwargs.pop('drop_last', False)
|
1243 |
+
num_workers = kwargs.pop('num_workers', 0)
|
1244 |
+
|
1245 |
+
self.mxm_model = AutoModel.from_pretrained("Huhujingjing/custom-transmxm", trust_remote_code=True).to(device)
|
1246 |
+
self.mxm_model.eval()
|
1247 |
+
|
1248 |
+
self.dataset = self.process.get_data(smiles)
|
1249 |
+
self.output = ""
|
1250 |
+
self.output += ("predicted samples num: {}\n".format(len(self.dataset)))
|
1251 |
+
self.output +=("predicted samples:{}\n".format(self.dataset[0]))
|
1252 |
+
self.data_loader = DataLoader(self.dataset,
|
1253 |
+
batch_size=batch_size,
|
1254 |
+
shuffle=shuffle,
|
1255 |
+
drop_last=drop_last,
|
1256 |
+
num_workers=num_workers
|
1257 |
+
)
|
1258 |
+
self.pred_data = {
|
1259 |
+
'smiles': [],
|
1260 |
+
'pred': []
|
1261 |
+
}
|
1262 |
+
|
1263 |
+
for batch in tqdm(self.data_loader):
|
1264 |
+
batch = batch.to(device)
|
1265 |
+
with torch.no_grad():
|
1266 |
+
self.pred_data['smiles'] += batch['smiles']
|
1267 |
+
self.pred_data['pred'] += self.gcn_model(batch).cpu().tolist()
|
1268 |
+
|
1269 |
+
pred = torch.tensor(self.pred_data['pred']).reshape(-1)
|
1270 |
+
if device == 'cuda':
|
1271 |
+
pred = pred.cpu().tolist()
|
1272 |
+
self.pred_data['pred'] = pred
|
1273 |
+
pred_df = pd.DataFrame(self.pred_data)
|
1274 |
+
pred_df['pred'] = pred_df['pred'].apply(lambda x: round(x, 2))
|
1275 |
+
self.output +=('-' * 40 + '\n'+'predicted result: \n'+'{}\n'.format(pred_df))
|
1276 |
+
self.output +=('-' * 40)
|
1277 |
+
|
1278 |
+
pred_df.to_csv(os.path.join(result_dir, 'prediction.csv'), index=False)
|
1279 |
+
self.output +=('\nsave predicted result to {}\n'.format(os.path.join(result_dir, 'prediction.csv')))
|
1280 |
+
|
1281 |
+
return self.output
|
1282 |
+
|
1283 |
+
|
1284 |
+
if __name__ == "__main__":
|
1285 |
+
|
1286 |
+
transmxm_config = TransmxmConfig.from_pretrained("custom-transmxm")
|
1287 |
+
|
1288 |
+
transmxmd = TransmxmModel(transmxm_config)
|
1289 |
+
transmxmd.model.load_state_dict(torch.load(r'G:\Trans_MXM\runs\model.pt'))
|
1290 |
+
transmxmd.save_pretrained("custom-transmxm")
|
1291 |
+
|