from transformers import PreTrainedModel # from timm.models.resnet import BasicBlock, Bottleneck, ResNet # from transmxm_model.configuration_transmxm import TransmxmConfig import torch import os import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Parameter, Sequential, ModuleList, Linear from rdkit import Chem from rdkit.Chem import AllChem from transformers import PretrainedConfig from transformers import PreTrainedModel from transformers import AutoModel from torch_geometric.data import Data from torch_geometric.loader import DataLoader from torch_geometric.utils import remove_self_loops, add_self_loops, sort_edge_index from torch_scatter import scatter from torch_geometric.nn import global_add_pool, radius from torch_sparse import SparseTensor from transmxm_model.configuration_transmxm import TransmxmConfig from tqdm import tqdm import numpy as np import pandas as pd from typing import List import math import inspect from operator import itemgetter from collections import OrderedDict from math import sqrt, pi as PI from scipy.optimize import brentq from scipy import special as sp try: import sympy as sym except ImportError: sym = None class SmilesDataset(torch.utils.data.Dataset): def __init__(self, smiles): self.smiles_list = smiles self.data_list = [] def __len__(self): return len(self.data_list) def __getitem__(self, idx): return self.data_list[idx] def get_data(self, smiles): self.smiles_list = smiles # self.data_list = [] # bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3} types = {'H': 0, 'C': 1, 'N': 2, 'O': 3, 'S': 4} for i in range(len(self.smiles_list)): # 将 SMILES 表示转换为 RDKit 的分子对象 # print(self.smiles_list[i]) mol = Chem.MolFromSmiles(self.smiles_list[i]) # 从smiles编码中获取结构信息 if mol is None: print("无法创建Mol对象", self.smiles_list[i]) else: mol3d = Chem.AddHs( mol) # 在rdkit中,分子在默认情况下是不显示氢的,但氢原子对于真实的几何构象计算有很大的影响,所以在计算3D构象前,需要使用Chem.AddHs()方法加上氢原子 if mol3d is None: print("无法创建mol3d对象", self.smiles_list[i]) else: AllChem.EmbedMolecule(mol3d, randomSeed=1) # 生成3D构象 N = mol3d.GetNumAtoms() # 获取原子坐标信息 if mol3d.GetNumConformers() > 0: conformer = mol3d.GetConformer() pos = conformer.GetPositions() pos = torch.tensor(pos, dtype=torch.float) type_idx = [] # atomic_number = [] # aromatic = [] # sp = [] # sp2 = [] # sp3 = [] for atom in mol3d.GetAtoms(): type_idx.append(types[atom.GetSymbol()]) # atomic_number.append(atom.GetAtomicNum()) # aromatic.append(1 if atom.GetIsAromatic() else 0) # hybridization = atom.GetHybridization() # sp.append(1 if hybridization == HybridizationType.SP else 0) # sp2.append(1 if hybridization == HybridizationType.SP2 else 0) # sp3.append(1 if hybridization == HybridizationType.SP3 else 0) # z = torch.tensor(atomic_number, dtype=torch.long) row, col, edge_type = [], [], [] for bond in mol3d.GetBonds(): start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() row += [start, end] col += [end, start] # edge_type += 2 * [bonds[bond.GetBondType()]] edge_index = torch.tensor([row, col], dtype=torch.long) # edge_type = torch.tensor(edge_type, dtype=torch.long) # edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float) perm = (edge_index[0] * N + edge_index[1]).argsort() edge_index = edge_index[:, perm] # edge_type = edge_type[perm] # edge_attr = edge_attr[perm] # # row, col = edge_index # hs = (z == 1).to(torch.float) x = torch.tensor(type_idx).to(torch.float) # y = self.y_list[i] data = Data(x=x, pos=pos, edge_index=edge_index, smiles=self.smiles_list[i]) self.data_list.append(data) else: print("无法创建comfor", self.smiles_list[i]) return self.data_list # -------------------------------------------------------- # WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf) # Github source: https://github.com/microsoft/unilm/tree/master/wavlm # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Based on fairseq code bases # https://github.com/pytorch/fairseq # -------------------------------------------------------- import math import logging from typing import List, Optional, Tuple import numpy as np from torch.nn import LayerNorm import copy from typing import Optional import torch import torch.nn.functional as F from torch import nn, Tensor class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. (To 1D sequences) """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask): """ Args: x: torch.tensor, (batch_size, L, d) mask: torch.tensor, (batch_size, L), with 1 as valid Returns: """ assert mask is not None x_embed = mask.cumsum(1, dtype=torch.float32) # (bsz, L) if self.normalize: eps = 1e-6 x_embed = x_embed / (x_embed[:, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) # dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode='trunc') / self.num_pos_feats) pos_x = x_embed[:, :, None] / dim_t # (bsz, L, num_pos_feats) pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) # (bsz, L, num_pos_feats*2) # import ipdb; ipdb.set_trace() return pos_x # .permute(0, 2, 1) # (bsz, num_pos_feats*2, L) def build_position_encoding(x): N_steps = x pos_embed = PositionEmbeddingSine(N_steps, normalize=True) return pos_embed class Transformer(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() # TransformerEncoderLayer encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, att_mask, pos_embed): """ Args: src: (batch_size, L, d) mask: (batch_size, L) query_embed: (#queries, d) pos_embed: (batch_size, L, d) the same as src Returns: """ src = src.permute(1, 0, 2) # (L, batch_size, d) pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d) memory = self.encoder( src, mask=att_mask, src_key_padding_mask=mask, pos=pos_embed ) memory = memory.transpose(0, 1) return memory class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): output = src intermediate = [] for layer in self.layers: output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos) if self.return_intermediate: intermediate.append(output) if self.norm is not None: output = self.norm(output) if self.return_intermediate: return torch.stack(intermediate) return output class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def build_transformer(x): return Transformer( d_model=x, dropout=0.5, nhead=8, dim_feedforward=1024, num_encoder_layers=2, normalize_before=True, ) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") class EMA: def __init__(self, model, decay): self.decay = decay self.shadow = {} self.original = {} # Register model parameters for name, param in model.named_parameters(): if param.requires_grad: self.shadow[name] = param.data.clone() def __call__(self, model, num_updates=99999): decay = min(self.decay, (1.0 + num_updates) / (10.0 + num_updates)) for name, param in model.named_parameters(): if param.requires_grad: assert name in self.shadow new_average = \ (1.0 - decay) * param.data + decay * self.shadow[name] self.shadow[name] = new_average.clone() def assign(self, model): for name, param in model.named_parameters(): if param.requires_grad: assert name in self.shadow self.original[name] = param.data.clone() param.data = self.shadow[name] def resume(self, model): for name, param in model.named_parameters(): if param.requires_grad: assert name in self.shadow param.data = self.original[name] def MLP(channels): return Sequential(*[ Sequential(Linear(channels[i - 1], channels[i]), SiLU()) for i in range(1, len(channels))]) class Res(nn.Module): def __init__(self, dim): super(Res, self).__init__() self.mlp = MLP([dim, dim, dim]) def forward(self, m): m1 = self.mlp(m) m_out = m1 + m return m_out def compute_idx(pos, edge_index): pos_i = pos[edge_index[0]] pos_j = pos[edge_index[1]] d_ij = torch.norm(abs(pos_j - pos_i), dim=-1, keepdim=False).unsqueeze(-1) + 1e-5 v_ji = (pos_i - pos_j) / d_ij unique, counts = torch.unique(edge_index[0], sorted=True, return_counts=True) #Get central values full_index = torch.arange(0, edge_index[0].size()[0]).cuda().int() #init full index #print('full_index', full_index) #Compute 1 repeat = torch.repeat_interleave(counts, counts) counts_repeat1 = torch.repeat_interleave(full_index, repeat) #0,...,0,1,...,1,... #Compute 2 split = torch.split(full_index, counts.tolist()) #split full index index2 = list(edge_index[0].data.cpu().numpy()) #get repeat index counts_repeat2 = torch.cat(itemgetter(*index2)(split), dim=0) #0,1,2,...,0,1,2,.. #Compute angle embeddings v1 = v_ji[counts_repeat1.long()] v2 = v_ji[counts_repeat2.long()] angle = (v1*v2).sum(-1).unsqueeze(-1) angle = torch.clamp(angle, min=-1.0, max=1.0) + 1e-6 + 1.0 return counts_repeat1.long(), counts_repeat2.long(), angle def Jn(r, n): return np.sqrt(np.pi / (2 * r)) * sp.jv(n + 0.5, r) def Jn_zeros(n, k): zerosj = np.zeros((n, k), dtype='float32') zerosj[0] = np.arange(1, k + 1) * np.pi points = np.arange(1, k + n) * np.pi racines = np.zeros(k + n - 1, dtype='float32') for i in range(1, n): for j in range(k + n - 1 - i): foo = brentq(Jn, points[j], points[j + 1], (i, )) racines[j] = foo points = racines zerosj[i][:k] = racines[:k] return zerosj def spherical_bessel_formulas(n): x = sym.symbols('x') f = [sym.sin(x) / x] a = sym.sin(x) / x for i in range(1, n): b = sym.diff(a, x) / x f += [sym.simplify(b * (-x)**i)] a = sym.simplify(b) return f def bessel_basis(n, k): zeros = Jn_zeros(n, k) normalizer = [] for order in range(n): normalizer_tmp = [] for i in range(k): normalizer_tmp += [0.5 * Jn(zeros[order, i], order + 1)**2] normalizer_tmp = 1 / np.array(normalizer_tmp)**0.5 normalizer += [normalizer_tmp] f = spherical_bessel_formulas(n) x = sym.symbols('x') bess_basis = [] for order in range(n): bess_basis_tmp = [] for i in range(k): bess_basis_tmp += [ sym.simplify(normalizer[order][i] * f[order].subs(x, zeros[order, i] * x)) ] bess_basis += [bess_basis_tmp] return bess_basis def sph_harm_prefactor(k, m): return ((2 * k + 1) * np.math.factorial(k - abs(m)) / (4 * np.pi * np.math.factorial(k + abs(m))))**0.5 def associated_legendre_polynomials(k, zero_m_only=True): z = sym.symbols('z') P_l_m = [[0] * (j + 1) for j in range(k)] P_l_m[0][0] = 1 if k > 0: P_l_m[1][0] = z for j in range(2, k): P_l_m[j][0] = sym.simplify(((2 * j - 1) * z * P_l_m[j - 1][0] - (j - 1) * P_l_m[j - 2][0]) / j) if not zero_m_only: for i in range(1, k): P_l_m[i][i] = sym.simplify((1 - 2 * i) * P_l_m[i - 1][i - 1]) if i + 1 < k: P_l_m[i + 1][i] = sym.simplify( (2 * i + 1) * z * P_l_m[i][i]) for j in range(i + 2, k): P_l_m[j][i] = sym.simplify( ((2 * j - 1) * z * P_l_m[j - 1][i] - (i + j - 1) * P_l_m[j - 2][i]) / (j - i)) return P_l_m def real_sph_harm(k, zero_m_only=True, spherical_coordinates=True): if not zero_m_only: S_m = [0] C_m = [1] for i in range(1, k): x = sym.symbols('x') y = sym.symbols('y') S_m += [x * S_m[i - 1] + y * C_m[i - 1]] C_m += [x * C_m[i - 1] - y * S_m[i - 1]] P_l_m = associated_legendre_polynomials(k, zero_m_only) if spherical_coordinates: theta = sym.symbols('theta') z = sym.symbols('z') for i in range(len(P_l_m)): for j in range(len(P_l_m[i])): if type(P_l_m[i][j]) != int: P_l_m[i][j] = P_l_m[i][j].subs(z, sym.cos(theta)) if not zero_m_only: phi = sym.symbols('phi') for i in range(len(S_m)): S_m[i] = S_m[i].subs(x, sym.sin(theta) * sym.cos(phi)).subs( y, sym.sin(theta) * sym.sin(phi)) for i in range(len(C_m)): C_m[i] = C_m[i].subs(x, sym.sin(theta) * sym.cos(phi)).subs( y, sym.sin(theta) * sym.sin(phi)) Y_func_l_m = [['0'] * (2 * j + 1) for j in range(k)] for i in range(k): Y_func_l_m[i][0] = sym.simplify(sph_harm_prefactor(i, 0) * P_l_m[i][0]) if not zero_m_only: for i in range(1, k): for j in range(1, i + 1): Y_func_l_m[i][j] = sym.simplify( 2**0.5 * sph_harm_prefactor(i, j) * C_m[j] * P_l_m[i][j]) for i in range(1, k): for j in range(1, i + 1): Y_func_l_m[i][-j] = sym.simplify( 2**0.5 * sph_harm_prefactor(i, -j) * S_m[j] * P_l_m[i][j]) return Y_func_l_m class BesselBasisLayer(torch.nn.Module): def __init__(self, num_radial, cutoff, envelope_exponent=6): super(BesselBasisLayer, self).__init__() self.cutoff = cutoff self.envelope = Envelope(envelope_exponent) self.freq = torch.nn.Parameter(torch.Tensor(num_radial)) self.reset_parameters() def reset_parameters(self): # 代替in-place操作 # torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI) # self.freq = torch.arange(1, self.freq.numel() + 1, out=self.freq).mul_(PI) # 计算临时张量并存储到 tmp_tensor 变量中 tmp_tensor = torch.arange(1, self.freq.numel() + 1, dtype=self.freq.dtype, device=self.freq.device) # 使用乘法函数实现数乘并将结果保存到 self.freq 张量上 self.freq.data = torch.mul(tmp_tensor, PI) def forward(self, dist): dist = dist.unsqueeze(-1) / self.cutoff return self.envelope(dist) * (self.freq * dist).sin() class SiLU(nn.Module): def __init__(self): super().__init__() def forward(self, input): return silu(input) def silu(input): return input * torch.sigmoid(input) class Envelope(torch.nn.Module): def __init__(self, exponent): super(Envelope, self).__init__() self.p = exponent self.a = -(self.p + 1) * (self.p + 2) / 2 self.b = self.p * (self.p + 2) self.c = -self.p * (self.p + 1) / 2 def forward(self, x): p, a, b, c = self.p, self.a, self.b, self.c x_pow_p0 = x.pow(p) x_pow_p1 = x_pow_p0 * x env_val = 1. / x + a * x_pow_p0 + b * x_pow_p1 + c * x_pow_p1 * x zero = torch.zeros_like(x) return torch.where(x < 1, env_val, zero) class SphericalBasisLayer(torch.nn.Module): def __init__(self, num_spherical, num_radial, cutoff=5.0, envelope_exponent=5): super(SphericalBasisLayer, self).__init__() assert num_radial <= 64 self.num_spherical = num_spherical self.num_radial = num_radial self.cutoff = cutoff self.envelope = Envelope(envelope_exponent) bessel_forms = bessel_basis(num_spherical, num_radial) sph_harm_forms = real_sph_harm(num_spherical) self.sph_funcs = [] self.bessel_funcs = [] x, theta = sym.symbols('x theta') modules = {'sin': torch.sin, 'cos': torch.cos} for i in range(num_spherical): if i == 0: sph1 = sym.lambdify([theta], sph_harm_forms[i][0], modules)(0) self.sph_funcs.append(lambda x: torch.zeros_like(x) + sph1) else: sph = sym.lambdify([theta], sph_harm_forms[i][0], modules) self.sph_funcs.append(sph) for j in range(num_radial): bessel = sym.lambdify([x], bessel_forms[i][j], modules) self.bessel_funcs.append(bessel) def forward(self, dist, angle, idx_kj): dist = dist / self.cutoff rbf = torch.stack([f(dist) for f in self.bessel_funcs], dim=1) rbf = self.envelope(dist).unsqueeze(-1) * rbf cbf = torch.stack([f(angle) for f in self.sph_funcs], dim=1) n, k = self.num_spherical, self.num_radial out = (rbf[idx_kj].view(-1, n, k) * cbf.view(-1, n, 1)).view(-1, n * k) return out msg_special_args = set([ 'edge_index', 'edge_index_i', 'edge_index_j', 'size', 'size_i', 'size_j', ]) aggr_special_args = set([ 'index', 'dim_size', ]) update_special_args = set([]) class MessagePassing(torch.nn.Module): r"""Base class for creating message passing layers .. math:: \mathbf{x}_i^{\prime} = \gamma_{\mathbf{\Theta}} \left( \mathbf{x}_i, \square_{j \in \mathcal{N}(i)} \, \phi_{\mathbf{\Theta}} \left(\mathbf{x}_i, \mathbf{x}_j,\mathbf{e}_{i,j}\right) \right), where :math:`\square` denotes a differentiable, permutation invariant function, *e.g.*, sum, mean or max, and :math:`\gamma_{\mathbf{\Theta}}` and :math:`\phi_{\mathbf{\Theta}}` denote differentiable functions such as MLPs. See `here `__ for the accompanying tutorial. Args: aggr (string, optional): The aggregation scheme to use (:obj:`"add"`, :obj:`"mean"` or :obj:`"max"`). (default: :obj:`"add"`) flow (string, optional): The flow direction of message passing (:obj:`"source_to_target"` or :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) node_dim (int, optional): The axis along which to propagate. (default: :obj:`0`) """ def __init__(self, aggr='add', flow='target_to_source', node_dim=0): super(MessagePassing, self).__init__() self.aggr = aggr assert self.aggr in ['add', 'mean', 'max'] self.flow = flow assert self.flow in ['source_to_target', 'target_to_source'] self.node_dim = node_dim assert self.node_dim >= 0 self.__msg_params__ = inspect.signature(self.message).parameters self.__msg_params__ = OrderedDict(self.__msg_params__) self.__aggr_params__ = inspect.signature(self.aggregate).parameters self.__aggr_params__ = OrderedDict(self.__aggr_params__) self.__aggr_params__.popitem(last=False) self.__update_params__ = inspect.signature(self.update).parameters self.__update_params__ = OrderedDict(self.__update_params__) self.__update_params__.popitem(last=False) msg_args = set(self.__msg_params__.keys()) - msg_special_args aggr_args = set(self.__aggr_params__.keys()) - aggr_special_args update_args = set(self.__update_params__.keys()) - update_special_args self.__args__ = set().union(msg_args, aggr_args, update_args) def __set_size__(self, size, index, tensor): if not torch.is_tensor(tensor): pass elif size[index] is None: size[index] = tensor.size(self.node_dim) elif size[index] != tensor.size(self.node_dim): raise ValueError( (f'Encountered node tensor with size ' f'{tensor.size(self.node_dim)} in dimension {self.node_dim}, ' f'but expected size {size[index]}.')) def __collect__(self, edge_index, size, kwargs): i, j = (0, 1) if self.flow == "target_to_source" else (1, 0) ij = {"_i": i, "_j": j} out = {} for arg in self.__args__: if arg[-2:] not in ij.keys(): out[arg] = kwargs.get(arg, inspect.Parameter.empty) else: idx = ij[arg[-2:]] data = kwargs.get(arg[:-2], inspect.Parameter.empty) if data is inspect.Parameter.empty: out[arg] = data continue if isinstance(data, tuple) or isinstance(data, list): assert len(data) == 2 self.__set_size__(size, 1 - idx, data[1 - idx]) data = data[idx] if not torch.is_tensor(data): out[arg] = data continue self.__set_size__(size, idx, data) out[arg] = data.index_select(self.node_dim, edge_index[idx]) size[0] = size[1] if size[0] is None else size[0] size[1] = size[0] if size[1] is None else size[1] # Add special message arguments. out['edge_index'] = edge_index out['edge_index_i'] = edge_index[i] out['edge_index_j'] = edge_index[j] out['size'] = size out['size_i'] = size[i] out['size_j'] = size[j] # Add special aggregate arguments. out['index'] = out['edge_index_i'] out['dim_size'] = out['size_i'] return out def __distribute__(self, params, kwargs): out = {} for key, param in params.items(): data = kwargs[key] if data is inspect.Parameter.empty: if param.default is inspect.Parameter.empty: raise TypeError(f'Required parameter {key} is empty.') data = param.default out[key] = data return out def propagate(self, edge_index, size=None, **kwargs): r"""The initial call to start propagating messages. Args: edge_index (Tensor): The indices of a general (sparse) assignment matrix with shape :obj:`[N, M]` (can be directed or undirected). size (list or tuple, optional): The size :obj:`[N, M]` of the assignment matrix. If set to :obj:`None`, the size will be automatically inferred and assumed to be quadratic. (default: :obj:`None`) **kwargs: Any additional data which is needed to construct and aggregate messages, and to update node embeddings. """ size = [None, None] if size is None else size size = [size, size] if isinstance(size, int) else size size = size.tolist() if torch.is_tensor(size) else size size = list(size) if isinstance(size, tuple) else size assert isinstance(size, list) assert len(size) == 2 kwargs = self.__collect__(edge_index, size, kwargs) msg_kwargs = self.__distribute__(self.__msg_params__, kwargs) m = self.message(**msg_kwargs) aggr_kwargs = self.__distribute__(self.__aggr_params__, kwargs) m = self.aggregate(m, **aggr_kwargs) update_kwargs = self.__distribute__(self.__update_params__, kwargs) m = self.update(m, **update_kwargs) return m def message(self, x_j): # pragma: no cover r"""Constructs messages to node :math:`i` in analogy to :math:`\phi_{\mathbf{\Theta}}` for each edge in :math:`(j,i) \in \mathcal{E}` if :obj:`flow="source_to_target"` and :math:`(i,j) \in \mathcal{E}` if :obj:`flow="target_to_source"`. Can take any argument which was initially passed to :meth:`propagate`. In addition, tensors passed to :meth:`propagate` can be mapped to the respective nodes :math:`i` and :math:`j` by appending :obj:`_i` or :obj:`_j` to the variable name, *.e.g.* :obj:`x_i` and :obj:`x_j`. """ return x_j def aggregate(self, inputs, index, dim_size): # pragma: no cover r"""Aggregates messages from neighbors as :math:`\square_{j \in \mathcal{N}(i)}`. By default, delegates call to scatter functions that support "add", "mean" and "max" operations specified in :meth:`__init__` by the :obj:`aggr` argument. """ return scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr) def update(self, inputs): # pragma: no cover r"""Updates node embeddings in analogy to :math:`\gamma_{\mathbf{\Theta}}` for each node :math:`i \in \mathcal{V}`. Takes in the output of aggregation as first argument and any argument which was initially passed to :meth:`propagate`. """ return inputs class TransMXMNet(nn.Module): def __init__(self, dim=128, n_layer=6, cutoff=5.0, num_spherical=7, num_radial=6, envelope_exponent=5): super(TransMXMNet, self).__init__() self.dim = dim self.n_layer = n_layer self.cutoff = cutoff self.embeddings = nn.Parameter(torch.ones((5, self.dim))) self.rbf_l = BesselBasisLayer(16, 5, envelope_exponent) self.rbf_g = BesselBasisLayer(16, self.cutoff, envelope_exponent) self.sbf = SphericalBasisLayer(num_spherical, num_radial, 5, envelope_exponent) self.rbf_g_mlp = MLP([16, self.dim]) self.rbf_l_mlp = MLP([16, self.dim]) self.sbf_1_mlp = MLP([num_spherical * num_radial, self.dim]) self.sbf_2_mlp = MLP([num_spherical * num_radial, self.dim]) self.global_layers = torch.nn.ModuleList() for layer in range(self.n_layer): self.global_layers.append(Global_MP(self.dim)) self.local_layers = torch.nn.ModuleList() for layer in range(self.n_layer): self.local_layers.append(Local_MP(self.dim)) self.pos_embed = build_position_encoding(self.dim) self.transformer = build_transformer(self.dim) self.init() def init(self): stdv = math.sqrt(3) self.embeddings.data.uniform_(-stdv, stdv) def indices(self, edge_index, num_nodes): row, col = edge_index value = torch.arange(row.size(0), device=row.device) adj_t = SparseTensor(row=col, col=row, value=value, sparse_sizes=(num_nodes, num_nodes)) #Compute the node indices for two-hop angles adj_t_row = adj_t[row] num_triplets = adj_t_row.set_value(None).sum(dim=1).to(torch.long) idx_i = col.repeat_interleave(num_triplets) idx_j = row.repeat_interleave(num_triplets) idx_k = adj_t_row.storage.col() mask = idx_i != idx_k idx_i_1, idx_j, idx_k = idx_i[mask], idx_j[mask], idx_k[mask] idx_kj = adj_t_row.storage.value()[mask] idx_ji_1 = adj_t_row.storage.row()[mask] #Compute the node indices for one-hop angles adj_t_col = adj_t[col] num_pairs = adj_t_col.set_value(None).sum(dim=1).to(torch.long) idx_i_2 = row.repeat_interleave(num_pairs) idx_j1 = col.repeat_interleave(num_pairs) idx_j2 = adj_t_col.storage.col() idx_ji_2 = adj_t_col.storage.row() idx_jj = adj_t_col.storage.value() return idx_i_1, idx_j, idx_k, idx_kj, idx_ji_1, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2 def forward_features(self, data): x = data.x edge_index = data.edge_index pos = data.pos batch = data.batch # Initialize node embeddings h = torch.index_select(self.embeddings, 0, x.long()).unsqueeze(0) data_len = torch.bincount(batch) # 计算相邻元素差异 diff_tensor = torch.diff(data_len) indices = torch.nonzero(diff_tensor) + 1 indices[0] = 0 att_mask = torch.zeros(len(batch), len(batch)).cuda() att_mask[indices[0]:, indices[0]:] = 1 i = 0 for i in range(0, h.size(0) - 1): att_mask[indices[i]:indices[i + 1], indices[i]:indices[i + 1]] = 1 att_mask[indices[i]:indices[-1], indices[i]:indices[-1]] = 1 mask = torch.ones(1, len(batch)).bool().cuda() pos_h = self.pos_embed(h, mask).cuda() memory = self.transformer(h, ~mask, att_mask, pos_h) h = memory.squeeze(0) '''局部层-------------------------------------------------------------------------- ''' # Get the edges and pairwise distances in the local layer edge_index_l, _ = remove_self_loops(edge_index) # 移除自环后的边索引 j_l, i_l = edge_index_l dist_l = (pos[i_l] - pos[j_l]).pow(2).sum(dim=-1).sqrt() # 两个节点之间的距离 '''全局层-------------------------------------------------------------------------- ''' # Get the edges pairwise distances in the global layer # radius函数返回两个节点之间的距离小于cutoff的边索引 row, col = radius(pos, pos, self.cutoff, batch, batch, max_num_neighbors=500) edge_index_g = torch.stack([row, col], dim=0) edge_index_g, _ = remove_self_loops(edge_index_g) j_g, i_g = edge_index_g dist_g = (pos[i_g] - pos[j_g]).pow(2).sum(dim=-1).sqrt() # Compute the node indices for defining the angles idx_i_1, idx_j, idx_k, idx_kj, idx_ji, idx_i_2, idx_j1, idx_j2, idx_jj, idx_ji_2 = self.indices(edge_index_l, num_nodes=h.size(0)) # Compute the two-hop angles pos_ji_1, pos_kj = pos[idx_j] - pos[idx_i_1], pos[idx_k] - pos[idx_j] a = (pos_ji_1 * pos_kj).sum(dim=-1) b = torch.cross(pos_ji_1, pos_kj).norm(dim=-1) angle_1 = torch.atan2(b, a) # Compute the one-hop angles pos_ji_2, pos_jj = pos[idx_j1] - pos[idx_i_2], pos[idx_j2] - pos[idx_j1] a = (pos_ji_2 * pos_jj).sum(dim=-1) b = torch.cross(pos_ji_2, pos_jj).norm(dim=-1) angle_2 = torch.atan2(b, a) # Get the RBF and SBF embeddings rbf_g = self.rbf_g(dist_g) rbf_l = self.rbf_l(dist_l) sbf_1 = self.sbf(dist_l, angle_1, idx_kj) sbf_2 = self.sbf(dist_l, angle_2, idx_jj) rbf_g = self.rbf_g_mlp(rbf_g) rbf_l = self.rbf_l_mlp(rbf_l) sbf_1 = self.sbf_1_mlp(sbf_1) sbf_2 = self.sbf_2_mlp(sbf_2) # Perform the message passing schemes node_sum = 0 for layer in range(self.n_layer): h = self.global_layers[layer](h, rbf_g, edge_index_g) h, t = self.local_layers[layer](h, rbf_l, sbf_1, sbf_2, idx_kj, idx_ji, idx_jj, idx_ji_2, edge_index_l) node_sum += t # Readout output = global_add_pool(node_sum, batch) return output.view(-1) def loss(self, pred, label): pred, label = pred.reshape(-1), label.reshape(-1) return F.mse_loss(pred, label) class Global_MP(MessagePassing): def __init__(self, dim): super(Global_MP, self).__init__() self.dim = dim self.h_mlp = MLP([self.dim, self.dim]) self.res1 = Res(self.dim) self.res2 = Res(self.dim) self.res3 = Res(self.dim) self.mlp = MLP([self.dim, self.dim]) self.x_edge_mlp = MLP([self.dim * 3, self.dim]) self.linear = nn.Linear(self.dim, self.dim, bias=False) def forward(self, h, edge_attr, edge_index): edge_index, _ = add_self_loops(edge_index, num_nodes=h.size(0)) res_h = h # Integrate the Cross Layer Mapping inside the Global Message Passing h = self.h_mlp(h) # Message Passing operation h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr) # Update function f_u h = self.res1(h) h = self.mlp(h) + res_h h = self.res2(h) h = self.res3(h) # Message Passing operation h = self.propagate(edge_index, x=h, num_nodes=h.size(0), edge_attr=edge_attr) return h def message(self, x_i, x_j, edge_attr, edge_index, num_nodes): num_edge = edge_attr.size()[0] x_edge = torch.cat((x_i[:num_edge], x_j[:num_edge], edge_attr), -1) x_edge = self.x_edge_mlp(x_edge) x_j = torch.cat((self.linear(edge_attr) * x_edge, x_j[num_edge:]), dim=0) return x_j def update(self, aggr_out): return aggr_out class Local_MP(torch.nn.Module): def __init__(self, dim): super(Local_MP, self).__init__() self.dim = dim self.h_mlp = MLP([self.dim, self.dim]) self.mlp_kj = MLP([3 * self.dim, self.dim]) self.mlp_ji_1 = MLP([3 * self.dim, self.dim]) self.mlp_ji_2 = MLP([self.dim, self.dim]) self.mlp_jj = MLP([self.dim, self.dim]) self.mlp_sbf1 = MLP([self.dim, self.dim, self.dim]) self.mlp_sbf2 = MLP([self.dim, self.dim, self.dim]) self.lin_rbf1 = nn.Linear(self.dim, self.dim, bias=False) self.lin_rbf2 = nn.Linear(self.dim, self.dim, bias=False) self.res1 = Res(self.dim) self.res2 = Res(self.dim) self.res3 = Res(self.dim) self.lin_rbf_out = nn.Linear(self.dim, self.dim, bias=False) self.h_mlp = MLP([self.dim, self.dim]) self.y_mlp = MLP([self.dim, self.dim, self.dim, self.dim]) self.y_W = nn.Linear(self.dim, 1) def forward(self, h, rbf, sbf1, sbf2, idx_kj, idx_ji_1, idx_jj, idx_ji_2, edge_index, num_nodes=None): res_h = h # Integrate the Cross Layer Mapping inside the Local Message Passing h = self.h_mlp(h) # Message Passing 1 j, i = edge_index m = torch.cat([h[i], h[j], rbf], dim=-1) m_kj = self.mlp_kj(m) m_kj = m_kj * self.lin_rbf1(rbf) m_kj = m_kj[idx_kj] * self.mlp_sbf1(sbf1) m_kj = scatter(m_kj, idx_ji_1, dim=0, dim_size=m.size(0), reduce='add') m_ji_1 = self.mlp_ji_1(m) m = m_ji_1 + m_kj # Message Passing 2 (index jj denotes j'i in the main paper) m_jj = self.mlp_jj(m) m_jj = m_jj * self.lin_rbf2(rbf) m_jj = m_jj[idx_jj] * self.mlp_sbf2(sbf2) m_jj = scatter(m_jj, idx_ji_2, dim=0, dim_size=m.size(0), reduce='add') m_ji_2 = self.mlp_ji_2(m) m = m_ji_2 + m_jj # Aggregation m = self.lin_rbf_out(rbf) * m h = scatter(m, i, dim=0, dim_size=h.size(0), reduce='add') # Update function f_u h = self.res1(h) h = self.h_mlp(h) + res_h h = self.res2(h) h = self.res3(h) # Output Module y = self.y_mlp(h) y = self.y_W(y) return h, y class TransmxmConfig(PretrainedConfig): model_type = "transmxm" def __init__( self, dim: int=128, n_layer: int=6, cutoff: float=5.0, num_spherical: int=7, num_radial: int=6, envelope_exponent: int=5, smiles: List[str] = None, processor_class: str = "SmilesProcessor", **kwargs, ): self.dim = dim # the dimension of input feature self.n_layer = n_layer # the number of GCN layers self.cutoff = cutoff # the cutoff distance for neighbor searching self.num_spherical = num_spherical # the number of spherical harmonics self.num_radial = num_radial # the number of radial basis self.envelope_exponent = envelope_exponent # the envelope exponent self.smiles = smiles # process smiles self.processor_class = processor_class super().__init__(**kwargs) class TransmxmModel(PreTrainedModel): config_class = TransmxmConfig def __init__(self, config): super().__init__(config) self.backbone = TransMXMNet( dim=config.dim, n_layer=config.n_layer, cutoff=config.cutoff, num_spherical=config.num_spherical, num_radial=config.num_radial, envelope_exponent=config.envelope_exponent, ) self.process = SmilesDataset( smiles=config.smiles, ) self.model = None self.dataset = None self.output = None self.data_loader = None self.pred_data = None def forward(self, tensor): return self.backbone.forward_features(tensor) def SmilesProcessor(self, smiles): return self.process.get_data(smiles) def predict_smiles(self, smiles, device: str='cpu', result_dir: str='./', **kwargs): batch_size = kwargs.pop('batch_size', 1) shuffle = kwargs.pop('shuffle', False) drop_last = kwargs.pop('drop_last', False) num_workers = kwargs.pop('num_workers', 0) self.model = AutoModel.from_pretrained("Huhujingjing/custom-transmxm", trust_remote_code=True).to(device) self.model.eval() self.dataset = self.process.get_data(smiles) self.output = "" self.output += ("predicted samples num: {}\n".format(len(self.dataset))) self.output +=("predicted samples:{}\n".format(self.dataset[0])) self.data_loader = DataLoader(self.dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers ) self.pred_data = { 'smiles': [], 'pred': [] } for batch in tqdm(self.data_loader): batch = batch.to(device) with torch.no_grad(): self.pred_data['smiles'] += batch['smiles'] self.pred_data['pred'] += self.model(batch).cpu().tolist() pred = torch.tensor(self.pred_data['pred']).reshape(-1) if device == 'cuda': pred = pred.cpu().tolist() self.pred_data['pred'] = pred pred_df = pd.DataFrame(self.pred_data) pred_df['pred'] = pred_df['pred'].apply(lambda x: round(x, 2)) self.output +=('-' * 40 + '\n'+'predicted result: \n'+'{}\n'.format(pred_df)) self.output +=('-' * 40) pred_df.to_csv(os.path.join(result_dir, 'prediction.csv'), index=False) self.output +=('\nsave predicted result to {}\n'.format(os.path.join(result_dir, 'prediction.csv'))) return self.output if __name__ == "__main__": transmxm_config = TransmxmConfig.from_pretrained("custom-transmxm") transmxmd = TransmxmModel(transmxm_config) transmxmd.model.load_state_dict(torch.load(r'G:\Trans_MXM\runs\model.pt')) transmxmd.save_pretrained("custom-transmxm")