--- library_name: stable-baselines3 tags: - seals/Humanoid-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: seals/Humanoid-v1 type: seals/Humanoid-v1 metrics: - type: mean_reward value: 3224.12 +/- 925.36 name: mean_reward verified: false --- # **PPO** Agent playing **seals/Humanoid-v1** This is a trained model of a **PPO** agent playing **seals/Humanoid-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
SB3: https://github.com/DLR-RM/stable-baselines3
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo ppo --env seals/Humanoid-v1 -orga HumanCompatibleAI -f logs/ python -m rl_zoo3.enjoy --algo ppo --env seals/Humanoid-v1 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo ppo --env seals/Humanoid-v1 -orga HumanCompatibleAI -f logs/ python -m rl_zoo3.enjoy --algo ppo --env seals/Humanoid-v1 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo ppo --env seals/Humanoid-v1 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo ppo --env seals/Humanoid-v1 -f logs/ -orga HumanCompatibleAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 0.2), ('ent_coef', 2.0745206045994986e-05), ('gae_lambda', 0.92), ('gamma', 0.999), ('learning_rate', 2.0309225666232827e-05), ('max_grad_norm', 0.5), ('n_envs', 1), ('n_epochs', 20), ('n_steps', 2048), ('n_timesteps', 10000000.0), ('normalize', {'gamma': 0.999, 'norm_obs': False, 'norm_reward': True}), ('policy', 'MlpPolicy'), ('policy_kwargs', {'activation_fn': , 'features_extractor_class': , 'net_arch': [{'pi': [256, 256], 'vf': [256, 256]}]}), ('vf_coef', 0.819262464558427), ('normalize_kwargs', {'norm_obs': {'gamma': 0.999, 'norm_obs': False, 'norm_reward': True}, 'norm_reward': False})]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```