diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -10,11 +10,11 @@ tags: - text-classification - generated_from_setfit_trainer widget: -- text: Good morning -- text: how does the recommendation system work on this platform -- text: who are you -- text: where is the search bar -- text: how can I find courses related to programming +- text: A plus tard +- text: what are microlearning modules +- text: what are the advantages of e-learning over traditional learning +- text: Salut +- text: The user experience could be improved. inference: true model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 @@ -28,7 +28,7 @@ model-index: split: test metrics: - type: accuracy - value: 0.8333333333333334 + value: 0.8571428571428571 name: Accuracy --- @@ -48,7 +48,7 @@ The model has been trained using an efficient few-shot learning technique that i - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens -- **Number of Classes:** 6 classes +- **Number of Classes:** 7 classes @@ -60,21 +60,22 @@ The model has been trained using an efficient few-shot learning technique that i - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels -| Label | Examples | -|:--------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -| general-questions | | -| website-information | | -| greet-who_are_you | | -| recommendations | | -| greet-hi | | -| greet-good_bye | | +| Label | Examples | +|:--------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| recommendations | | +| feedback | | +| website-information | | +| general-questions | | +| greet-good_bye | | +| greet-who_are_you | | +| greet-hi | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| -| **all** | 0.8333 | +| **all** | 0.8571 | ## Uses @@ -94,7 +95,7 @@ from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("HussienAhmad/SFT_GradProject") # Run inference -preds = model("who are you") +preds = model("Salut") ```