diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -1,21 +1,21 @@ --- -base_model: sentence-transformers/all-MiniLM-L6-v2 -library_name: setfit -metrics: -- accuracy -pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: -- text: A plus tard -- text: what are microlearning modules -- text: what are the advantages of e-learning over traditional learning -- text: Salut -- text: The user experience could be improved. +- text: The chatbot understood my queries perfectly. +- text: who are you +- text: I love the interface of the website. +- text: au revoir +- text: I like how personalized the recommendations feel. +metrics: +- accuracy +pipeline_tag: text-classification +library_name: setfit inference: true +base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: @@ -28,7 +28,7 @@ model-index: split: test metrics: - type: accuracy - value: 0.8571428571428571 + value: 0.9047619047619048 name: Accuracy --- @@ -60,22 +60,22 @@ The model has been trained using an efficient few-shot learning technique that i - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels -| Label | Examples | -|:--------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -| recommendations | | -| feedback | | -| website-information | | -| general-questions | | -| greet-good_bye | | -| greet-who_are_you | | -| greet-hi | | +| Label | Examples | +|:--------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| +| greet-who_are_you | | +| general-questions | | +| feedback | | +| greet-good_bye | | +| greet-hi | | +| recommendations | | +| website-information | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| -| **all** | 0.8571 | +| **all** | 0.9048 | ## Uses @@ -95,7 +95,7 @@ from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("HussienAhmad/SFT_GradProject") # Run inference -preds = model("Salut") +preds = model("au revoir") ```