{ "best_metric": 0.6735566258430481, "best_model_checkpoint": "./output_v2/7b_cluster01_Nous-Hermes-llama-2-7b_partitioned_v3_standardized_01/checkpoint-400", "epoch": 0.604001510003775, "global_step": 400, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 0.02, "learning_rate": 0.0002, "loss": 0.7673, "step": 10 }, { "epoch": 0.03, "learning_rate": 0.0002, "loss": 0.7735, "step": 20 }, { "epoch": 0.05, "learning_rate": 0.0002, "loss": 0.7443, "step": 30 }, { "epoch": 0.06, "learning_rate": 0.0002, "loss": 0.6747, "step": 40 }, { "epoch": 0.08, "learning_rate": 0.0002, "loss": 0.672, "step": 50 }, { "epoch": 0.09, "learning_rate": 0.0002, "loss": 0.6703, "step": 60 }, { "epoch": 0.11, "learning_rate": 0.0002, "loss": 0.6624, "step": 70 }, { "epoch": 0.12, "learning_rate": 0.0002, "loss": 0.6804, "step": 80 }, { "epoch": 0.14, "learning_rate": 0.0002, "loss": 0.6378, "step": 90 }, { "epoch": 0.15, "learning_rate": 0.0002, "loss": 0.6781, "step": 100 }, { "epoch": 0.17, "learning_rate": 0.0002, "loss": 0.6059, "step": 110 }, { "epoch": 0.18, "learning_rate": 0.0002, "loss": 0.6616, "step": 120 }, { "epoch": 0.2, "learning_rate": 0.0002, "loss": 0.6895, "step": 130 }, { "epoch": 0.21, "learning_rate": 0.0002, "loss": 0.6842, "step": 140 }, { "epoch": 0.23, "learning_rate": 0.0002, "loss": 0.6419, "step": 150 }, { "epoch": 0.24, "learning_rate": 0.0002, "loss": 0.6201, "step": 160 }, { "epoch": 0.26, "learning_rate": 0.0002, "loss": 0.6317, "step": 170 }, { "epoch": 0.27, "learning_rate": 0.0002, "loss": 0.6828, "step": 180 }, { "epoch": 0.29, "learning_rate": 0.0002, "loss": 0.6586, "step": 190 }, { "epoch": 0.3, "learning_rate": 0.0002, "loss": 0.663, "step": 200 }, { "epoch": 0.3, "eval_loss": 0.6853392720222473, "eval_runtime": 230.5166, "eval_samples_per_second": 4.338, "eval_steps_per_second": 2.169, "step": 200 }, { "epoch": 0.3, "mmlu_eval_accuracy": 0.4676449470057811, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.6428571428571429, "mmlu_eval_accuracy_astronomy": 0.4375, "mmlu_eval_accuracy_business_ethics": 0.5454545454545454, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.5, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.36363636363636365, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.4230769230769231, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.375, "mmlu_eval_accuracy_elementary_mathematics": 0.36585365853658536, "mmlu_eval_accuracy_formal_logic": 0.2857142857142857, "mmlu_eval_accuracy_global_facts": 0.6, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.4090909090909091, "mmlu_eval_accuracy_high_school_computer_science": 0.6666666666666666, "mmlu_eval_accuracy_high_school_european_history": 0.5, "mmlu_eval_accuracy_high_school_geography": 0.7727272727272727, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6190476190476191, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.2413793103448276, "mmlu_eval_accuracy_high_school_microeconomics": 0.4230769230769231, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.7, "mmlu_eval_accuracy_high_school_statistics": 0.21739130434782608, "mmlu_eval_accuracy_high_school_us_history": 0.7272727272727273, "mmlu_eval_accuracy_high_school_world_history": 0.5, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.3333333333333333, "mmlu_eval_accuracy_international_law": 0.8461538461538461, "mmlu_eval_accuracy_jurisprudence": 0.45454545454545453, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.2727272727272727, "mmlu_eval_accuracy_management": 0.5454545454545454, "mmlu_eval_accuracy_marketing": 0.8, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.6744186046511628, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.5454545454545454, "mmlu_eval_accuracy_philosophy": 0.5, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.2903225806451613, "mmlu_eval_accuracy_professional_law": 0.3588235294117647, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.391304347826087, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5185185185185185, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.6363636363636364, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0329186485851714, "step": 200 }, { "epoch": 0.32, "learning_rate": 0.0002, "loss": 0.6087, "step": 210 }, { "epoch": 0.33, "learning_rate": 0.0002, "loss": 0.619, "step": 220 }, { "epoch": 0.35, "learning_rate": 0.0002, "loss": 0.6318, "step": 230 }, { "epoch": 0.36, "learning_rate": 0.0002, "loss": 0.6463, "step": 240 }, { "epoch": 0.38, "learning_rate": 0.0002, "loss": 0.6824, "step": 250 }, { "epoch": 0.39, "learning_rate": 0.0002, "loss": 0.6566, "step": 260 }, { "epoch": 0.41, "learning_rate": 0.0002, "loss": 0.6696, "step": 270 }, { "epoch": 0.42, "learning_rate": 0.0002, "loss": 0.5874, "step": 280 }, { "epoch": 0.44, "learning_rate": 0.0002, "loss": 0.6725, "step": 290 }, { "epoch": 0.45, "learning_rate": 0.0002, "loss": 0.6457, "step": 300 }, { "epoch": 0.47, "learning_rate": 0.0002, "loss": 0.6532, "step": 310 }, { "epoch": 0.48, "learning_rate": 0.0002, "loss": 0.6033, "step": 320 }, { "epoch": 0.5, "learning_rate": 0.0002, "loss": 0.6371, "step": 330 }, { "epoch": 0.51, "learning_rate": 0.0002, "loss": 0.6461, "step": 340 }, { "epoch": 0.53, "learning_rate": 0.0002, "loss": 0.6207, "step": 350 }, { "epoch": 0.54, "learning_rate": 0.0002, "loss": 0.6267, "step": 360 }, { "epoch": 0.56, "learning_rate": 0.0002, "loss": 0.6129, "step": 370 }, { "epoch": 0.57, "learning_rate": 0.0002, "loss": 0.677, "step": 380 }, { "epoch": 0.59, "learning_rate": 0.0002, "loss": 0.7014, "step": 390 }, { "epoch": 0.6, "learning_rate": 0.0002, "loss": 0.6801, "step": 400 }, { "epoch": 0.6, "eval_loss": 0.6735566258430481, "eval_runtime": 230.1155, "eval_samples_per_second": 4.346, "eval_steps_per_second": 2.173, "step": 400 }, { "epoch": 0.6, "mmlu_eval_accuracy": 0.4676078319072668, "mmlu_eval_accuracy_abstract_algebra": 0.18181818181818182, "mmlu_eval_accuracy_anatomy": 0.5714285714285714, "mmlu_eval_accuracy_astronomy": 0.375, "mmlu_eval_accuracy_business_ethics": 0.45454545454545453, "mmlu_eval_accuracy_clinical_knowledge": 0.4482758620689655, "mmlu_eval_accuracy_college_biology": 0.4375, "mmlu_eval_accuracy_college_chemistry": 0.125, "mmlu_eval_accuracy_college_computer_science": 0.45454545454545453, "mmlu_eval_accuracy_college_mathematics": 0.18181818181818182, "mmlu_eval_accuracy_college_medicine": 0.3181818181818182, "mmlu_eval_accuracy_college_physics": 0.45454545454545453, "mmlu_eval_accuracy_computer_security": 0.2727272727272727, "mmlu_eval_accuracy_conceptual_physics": 0.46153846153846156, "mmlu_eval_accuracy_econometrics": 0.16666666666666666, "mmlu_eval_accuracy_electrical_engineering": 0.5, "mmlu_eval_accuracy_elementary_mathematics": 0.3170731707317073, "mmlu_eval_accuracy_formal_logic": 0.35714285714285715, "mmlu_eval_accuracy_global_facts": 0.5, "mmlu_eval_accuracy_high_school_biology": 0.375, "mmlu_eval_accuracy_high_school_chemistry": 0.45454545454545453, "mmlu_eval_accuracy_high_school_computer_science": 0.5555555555555556, "mmlu_eval_accuracy_high_school_european_history": 0.6666666666666666, "mmlu_eval_accuracy_high_school_geography": 0.8181818181818182, "mmlu_eval_accuracy_high_school_government_and_politics": 0.6666666666666666, "mmlu_eval_accuracy_high_school_macroeconomics": 0.3023255813953488, "mmlu_eval_accuracy_high_school_mathematics": 0.27586206896551724, "mmlu_eval_accuracy_high_school_microeconomics": 0.46153846153846156, "mmlu_eval_accuracy_high_school_physics": 0.35294117647058826, "mmlu_eval_accuracy_high_school_psychology": 0.6833333333333333, "mmlu_eval_accuracy_high_school_statistics": 0.30434782608695654, "mmlu_eval_accuracy_high_school_us_history": 0.6818181818181818, "mmlu_eval_accuracy_high_school_world_history": 0.5384615384615384, "mmlu_eval_accuracy_human_aging": 0.6956521739130435, "mmlu_eval_accuracy_human_sexuality": 0.4166666666666667, "mmlu_eval_accuracy_international_law": 0.7692307692307693, "mmlu_eval_accuracy_jurisprudence": 0.18181818181818182, "mmlu_eval_accuracy_logical_fallacies": 0.5555555555555556, "mmlu_eval_accuracy_machine_learning": 0.18181818181818182, "mmlu_eval_accuracy_management": 0.6363636363636364, "mmlu_eval_accuracy_marketing": 0.76, "mmlu_eval_accuracy_medical_genetics": 0.7272727272727273, "mmlu_eval_accuracy_miscellaneous": 0.686046511627907, "mmlu_eval_accuracy_moral_disputes": 0.39473684210526316, "mmlu_eval_accuracy_moral_scenarios": 0.24, "mmlu_eval_accuracy_nutrition": 0.6363636363636364, "mmlu_eval_accuracy_philosophy": 0.5294117647058824, "mmlu_eval_accuracy_prehistory": 0.5142857142857142, "mmlu_eval_accuracy_professional_accounting": 0.3548387096774194, "mmlu_eval_accuracy_professional_law": 0.32941176470588235, "mmlu_eval_accuracy_professional_medicine": 0.41935483870967744, "mmlu_eval_accuracy_professional_psychology": 0.36231884057971014, "mmlu_eval_accuracy_public_relations": 0.5833333333333334, "mmlu_eval_accuracy_security_studies": 0.5555555555555556, "mmlu_eval_accuracy_sociology": 0.6818181818181818, "mmlu_eval_accuracy_us_foreign_policy": 0.5454545454545454, "mmlu_eval_accuracy_virology": 0.4444444444444444, "mmlu_eval_accuracy_world_religions": 0.7368421052631579, "mmlu_loss": 1.0410969870520013, "step": 400 } ], "max_steps": 5000, "num_train_epochs": 8, "total_flos": 9.92288665729106e+16, "trial_name": null, "trial_params": null }