File size: 48,905 Bytes
780c589 df8cf63 780c589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 |
###########################################################################
# Computer vision - Embedded person tracking demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
import torch, torchvision, time, random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import os
from datetime import datetime
from collections import Counter
import torchvision.ops as ops
from pycocotools.cocoeval import COCOeval
import json
from tqdm import tqdm
import qat_core
def ssd_postprocess_person_cls(pred):
"""
Take the models prediction outputs (pred) and make the post processing operations to
classification head outputs since the output is not directly class probabilities.
Assuming square input image so H=W.
Assuming binary classes (0/1).
Input:
- pred: predicted outputs of the model as list of length 4 as [output1_reg, output1_class, output2_reg, output2_class]
and shape of [(NR1, CR1, HR1, WR1), (NC1, CC1, HC1, WC1), (NR2, CR2, HR2, WR2), (NC2, CC2, HC2, WC2)].
Returns:
- person_cls: person class probabilities (torch.FloatTensor) shape of [CC1/2*HC1*WC1 + CC2/2*HC2*WC2].
"""
head_regression_hires = pred[0]
head_classification_hires = pred[1]
head_regression_lores = pred[2]
head_classification_lores = pred[3]
# split classification head outputs for person and background
head_classification_hires_background = head_classification_hires[0,1::2,:,:]
head_classification_hires_person = head_classification_hires[0,0::2,:,:]
head_classification_lores_background = head_classification_lores[0,1::2,:,:]
head_classification_lores_person = head_classification_lores[0,0::2,:,:]
## assuming square input image so rows=cols
## I'll just define these globally:
hires_rowscols = head_regression_hires.shape[3] # could have been classification head too, just getting dimension
lores_rowscols = head_regression_lores.shape[3] # could have been classification head too, just getting dimension
hires_numanchors = int(head_regression_hires.shape[1]/4) # 4 because xywh
lores_numanchors = int(head_regression_lores.shape[1]/4) # 4 because xywh
background_hires_flat = explicit_flatten(head_classification_hires_background, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
background_lores_flat = explicit_flatten(head_classification_lores_background, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
person_hires_flat = explicit_flatten(head_classification_hires_person, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
person_lores_flat = explicit_flatten(head_classification_lores_person, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
person_flat = torch.cat((person_hires_flat, person_lores_flat))
background_flat = torch.cat((background_hires_flat, background_lores_flat))
total_cat = torch.cat( ( torch.unsqueeze(person_flat,0) , torch.unsqueeze(background_flat,0) ) )
softmax_fcn = torch.nn.Softmax(dim=0)
softmax_result = softmax_fcn(total_cat)
person_hires_flat_sft = softmax_result[0,:][0:background_hires_flat.shape[0]]
person_lores_flat_sft = softmax_result[0,:][background_hires_flat.shape[0]:]
person_hires_classification_scores = explicit_unflatten(person_hires_flat_sft, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
person_lores_classification_scores = explicit_unflatten(person_lores_flat_sft, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
person_cls = torch.cat(( person_hires_flat_sft, person_lores_flat_sft ))
return person_cls
def ssd_postprocess_person_bboxes(pred, image_width, image_height, anchors_head1, anchors_head2):
"""
Take the models prediction output (pred) and make the post processing operations to
show bboxes.
Assuming square input image so H=W.
Assuming binary classes (0/1).
Input:
- pred: predicted outputs of the model as list of length 4[output1_reg, output1_class, output2_reg, output2_class]
shape of [(NR1, CR1, HR1, WR1), (NC1, CC1, HC1, WC1), (NR2, CR2, HR2, WR2), (NC2, CC2, HC2, WC2)].
- image_width: Integer.
- image_height: Integer.
- anchors_head1: list of length 4, contains image_width/image_height*anchor_ratios as tuples.
shape [(W*A1, H*B1), (W*A2, H*B2), (W*A3, H*B3), (W*A4, H*B4)] where A#num and B#num are
corresponding different aspect ratios.
- anchors_head2: list of length 4, contains image_width/image_height*anchor_ratios as tuples.
shape [(W*C1, H*D1), (W*C2, H*D2), (W*C3, H*D3), (W*C4, H*D4)] where C#num and D#num are
corresponding different aspect ratios.
Returns:
- absolute_boxes: absolute value of bounding boxes (torch.FloatTensor) shape of [CR1/4*HR1*WR1 + CR2/4*HR2*WR2, 4].
"""
head_regression_hires = pred[0]
head_classification_hires = pred[1]
head_regression_lores = pred[2]
head_classification_lores = pred[3]
## assuming square input image so rows=cols
## I'll just define these globally:
hires_rowscols = head_regression_hires.shape[3] # could have been classification head too, just getting dimension
lores_rowscols = head_regression_lores.shape[3] # could have been classification head too, just getting dimension
hires_numanchors = int(head_regression_hires.shape[1]/4) # 4 because xywh
lores_numanchors = int(head_regression_lores.shape[1]/4) # 4 because xywh
# Postprocess regression + classification together, i.e., apply NMS
delta_x_hires = head_regression_hires[0, 0::4, :, :] # skip 4 means skip y,w,h and land on x again
delta_y_hires = head_regression_hires[0, 1::4, :, :] # skip 4 means skip w,h,x and land on y again, etc...
delta_w_hires = head_regression_hires[0, 2::4, :, :]
delta_h_hires = head_regression_hires[0, 3::4, :, :]
delta_x_lores = head_regression_lores[0, 0::4, :, :] # skip 4 means skip y,w,h and land on x again
delta_y_lores = head_regression_lores[0, 1::4, :, :] # skip 4 means skip w,h,x and land on y again, etc...
delta_w_lores = head_regression_lores[0, 2::4, :, :]
delta_h_lores = head_regression_lores[0, 3::4, :, :]
## There is also a concept called priorbox variance, see:
## https://github.com/weiliu89/caffe/issues/155#issuecomment-243541464
## https://leimao.github.io/blog/Bounding-Box-Encoding-Decoding/
##
## values taken from the xml, see layer "PriorBoxClustered":
var_x = 0.1
var_y = 0.1
var_w = 0.2
var_h = 0.2
w_anchors_hires = torch.tensor(anchors_head1)[:,0]
h_anchors_hires = torch.tensor(anchors_head1)[:,1]
w_anchors_lores = torch.tensor(anchors_head2)[:,0]
h_anchors_lores = torch.tensor(anchors_head2)[:,1]
x_anchors_hires = populate_xy_anchors(delta_x_hires, 'x')
y_anchors_hires = populate_xy_anchors(delta_y_hires, 'y')
x_anchors_lores = populate_xy_anchors(delta_x_lores, 'x')
y_anchors_lores = populate_xy_anchors(delta_y_lores, 'y')
w_anchors_hires_rpt = populate_wh_anchors(delta_w_hires, w_anchors_hires)
h_anchors_hires_rpt = populate_wh_anchors(delta_h_hires, h_anchors_hires)
w_anchors_lores_rpt = populate_wh_anchors(delta_w_lores, w_anchors_lores)
h_anchors_lores_rpt = populate_wh_anchors(delta_h_lores, h_anchors_lores)
absolute_x_hires = delta_x_hires * w_anchors_hires_rpt * var_x + x_anchors_hires
absolute_y_hires = delta_y_hires * h_anchors_hires_rpt * var_y + y_anchors_hires
absolute_x_lores = delta_x_lores * w_anchors_lores_rpt * var_x + x_anchors_lores
absolute_y_lores = delta_y_lores * h_anchors_lores_rpt * var_y + y_anchors_lores
absolute_w_hires = (delta_w_hires * var_w).exp() * w_anchors_hires_rpt
absolute_h_hires = (delta_h_hires * var_h).exp() * h_anchors_hires_rpt
absolute_w_lores = (delta_w_lores * var_w).exp() * w_anchors_lores_rpt
absolute_h_lores = (delta_h_lores * var_h).exp() * h_anchors_lores_rpt
absolute_hires_xleft = absolute_x_hires - absolute_w_hires/2
absolute_hires_xright = absolute_x_hires + absolute_w_hires/2
absolute_hires_ytop = absolute_y_hires - absolute_h_hires/2
absolute_hires_ybottom = absolute_y_hires + absolute_h_hires/2
absolute_lores_xleft = absolute_x_lores - absolute_w_lores/2
absolute_lores_xright = absolute_x_lores + absolute_w_lores/2
absolute_lores_ytop = absolute_y_lores - absolute_h_lores/2
absolute_lores_ybottom = absolute_y_lores + absolute_h_lores/2
absolute_hires_xleft_flat = explicit_flatten(absolute_hires_xleft, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_hires_xright_flat = explicit_flatten(absolute_hires_xright, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_hires_ytop_flat = explicit_flatten(absolute_hires_ytop, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_hires_ybottom_flat = explicit_flatten(absolute_hires_ybottom, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_lores_xleft_flat = explicit_flatten(absolute_lores_xleft, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_lores_xright_flat = explicit_flatten(absolute_lores_xright, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_lores_ytop_flat = explicit_flatten(absolute_lores_ytop, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_lores_ybottom_flat = explicit_flatten(absolute_lores_ybottom, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
absolute_xleft = torch.unsqueeze(torch.cat((absolute_hires_xleft_flat, absolute_lores_xleft_flat)) ,1)
absolute_xright = torch.unsqueeze(torch.cat((absolute_hires_xright_flat, absolute_lores_xright_flat)) ,1)
absolute_ytop = torch.unsqueeze(torch.cat((absolute_hires_ytop_flat, absolute_lores_ytop_flat)) ,1)
absolute_ybottom = torch.unsqueeze(torch.cat((absolute_hires_ybottom_flat, absolute_lores_ybottom_flat)),1)
absolute_boxes = torch.cat((absolute_xleft, absolute_ytop, absolute_xright, absolute_ybottom), dim=1)
return absolute_boxes
# so that we know what goes where
def explicit_flatten(tensor, hires_or_lores, hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors):
flattened_tensor = torch.zeros_like(tensor.flatten())
if(hires_or_lores=='hires'):
rc = hires_rowscols
na = hires_numanchors
elif(hires_or_lores=='lores'):
rc = lores_rowscols
na = lores_numanchors
else:
print("somethings wrong")
return
for row in range(0, rc):
for col in range(0, rc):
for anc in range(0, na):
flattened_tensor[anc*rc*rc + row*rc + col] = tensor[anc,row,col];
return flattened_tensor
# so that we know what goes where
def explicit_unflatten(flattened_tensor, hires_or_lores, hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors):
if(hires_or_lores=='hires'):
tensor = torch.zeros((hires_numanchors, hires_rowscols, hires_rowscols))
rc = hires_rowscols
na = hires_numanchors
elif(hires_or_lores=='lores'):
tensor = torch.zeros((lores_numanchors, lores_rowscols, lores_rowscols))
rc = lores_rowscols
na = lores_numanchors
else:
print("somethings wrong")
return
for row in range(0, rc):
for col in range(0, rc):
for anc in range(0, na):
tensor[anc,row,col] = flattened_tensor[anc*rc*rc + row*rc + col];
return tensor
def plot_softmax_confidence_scores(person_hires_flat_sft, person_lores_flat_sft):
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(person_hires_flat_sft.detach().cpu().numpy())
ax.plot(person_lores_flat_sft.detach().cpu().numpy())
ax.grid()
ax.legend(['hires confidences', 'lores confidences'])
plt.title('softmax-processed confidence scores for the two heads')
plt.show()
def populate_wh_anchors(delta_ref, wh_anchors_hilores):
wh_anchors_hilores_rpt = torch.ones_like(delta_ref)
for i in range(0, wh_anchors_hilores_rpt.shape[0]):
wh_anchors_hilores_rpt[i] = wh_anchors_hilores_rpt[i]*wh_anchors_hilores[i]
return wh_anchors_hilores_rpt
def populate_xy_anchors(delta_ref, x_or_y):
xy_anchors_hilores = torch.zeros_like(delta_ref)
scale = 512 / delta_ref.shape[2]
for i in range(0, xy_anchors_hilores.shape[0]): # count anchors
for j in range(0, xy_anchors_hilores.shape[1]): # count width
for k in range(0, xy_anchors_hilores.shape[2]): # count height
if(x_or_y == 'x'):
xy_anchors_hilores[i,j,k] = scale * k + (scale +1) / 2 # More precise conversion
if(x_or_y == 'y'):
xy_anchors_hilores[i,j,k] = scale * j + (scale +1) / 2
return xy_anchors_hilores
def plot_image_mnv2_2xSSDlite(image, pred_person_cls = None, pred_absolute_boxes = None, color = 'r'
,nmsIoUTreshold = 0.45, predConfPlotTreshold = 0.6,target=None, figsize=(16,16),
saveFig=False, imageID=None, folderName='UnconstFPT'):
""" Plots original image, ground truths, and predictions if available.
Does non-maximum-suppression and plots perdiction boxes, saves figure under "Training Outputs" folder in specified folderName
Args:
image : (Tensor) Shape[Channel,width, height]
pred_person_cls : (Tensor) person class confidences for predicted boxes Shape[numPred,1]
pred_absolute_boxes : (Tensor) predicted boxes [xmin,ymin,xmax,ymax] Shape[numPred,4]
color: Color of drawn predicted boxes
nmsIoUTreshold : non max suppression IoU treshold
predConfPlotTreshold : Confidence treshold to draw predicted boxes
target : (Tensor) Ground truth boxes [pictureID, xmin, ymin, w, h] Shape[numGt, 5]
folderName : Foldername under ./Model Outputs diectory to save figure.
Return: none
"""
# if image is normalized to [-1,1], re-map it to [0,1] for plotting purposes
if (image.min()<0):
image[0,:,:] = (image[0,:,:]/2)+0.5
image[1,:,:] = (image[1,:,:]/2)+0.5
image[2,:,:] = (image[2,:,:]/2)+0.5
image = image.permute(1, 2, 0).to("cpu")
fig, ax = plt.subplots(figsize=figsize);
if (saveFig):
plt.ioff()
else:
plt.ion()
ax.imshow(image,aspect='equal')
# Draw ground truth boxes if available
if (target != None):
absolute_box_label = target.clone()
if (absolute_box_label.shape[0] != 0):
absolute_box_label = absolute_box_label[:,1:]
absolute_box_label[:,2] = absolute_box_label[:,2] + absolute_box_label[:,0]
absolute_box_label[:,3] = absolute_box_label[:,3] + absolute_box_label[:,1]
for ii, box in enumerate(absolute_box_label):
upper_left_x = box[0]
upper_left_y = box[1]
ww = box[2] - box[0]
hh = box[3] - box[1]
rect = patches.Rectangle(
(upper_left_x, upper_left_y),
ww, hh,
linewidth=5,
edgecolor='g',
facecolor="none",
)
ax.add_patch(rect);
# Draw predicted absoulte boxes if available
if (pred_absolute_boxes != None):
confidences = pred_person_cls
boxes = pred_absolute_boxes
nms_picks = torchvision.ops.nms(boxes, confidences, nmsIoUTreshold)
boxes_to_draw = boxes[nms_picks].detach().cpu().numpy()
confs_to_draw = confidences[nms_picks].detach().cpu().numpy()
for ii, box in enumerate(boxes_to_draw):
if(confs_to_draw[ii] > predConfPlotTreshold):
upper_left_x = box[0];
upper_left_y = box[1];
ww = box[2] - box[0]
hh = box[3] - box[1]
conf = "{:.3f}".format(confs_to_draw[ii])
if not saveFig:
print(f'Conf{ii} : {confs_to_draw[ii]}')
plt.text(upper_left_x,upper_left_y-5, conf, fontsize = 12,color= color)
rect = patches.Rectangle(
(upper_left_x, upper_left_y),
ww, hh,
linewidth=2,
edgecolor=color,
facecolor="none",
)
ax.add_patch(rect);
if saveFig:
trainingOutpDir = os.path.join(".","Training Outputs")
saveDir = os.path.join(trainingOutpDir,folderName)
if not (os.path.isdir(trainingOutpDir)):
os.mkdir(trainingOutpDir)
if not (os.path.isdir(saveDir)):
os.mkdir(saveDir)
if (imageID == None):
imageID = 'NA'
else:
imageID = str(int(imageID))
imageName = folderName+"_ImgId_"+imageID+".png"
imageDir = os.path.join(saveDir, imageName)
plt.savefig(imageDir)
plt.close('all')
plt.cla()
else:
plt.show()
plt.close('all')
def generateAnchorsInOrigImage(anchors,headgridSize,originalPicSize=512):
'''
Prepares anchor tensors in original image.
E.g. If there are 4 anchors for the prediction head,
4 anchor positions in original image are calculated for (x=0, y=0),(x=1, y=0)... feature grid, and written
one under the other to anchorsInOrig
Args:
anchors : (tuple) Tuple of anchor boxes in Tensor w,h form Tuple(Shape[numAnchors,2])
headgridSize : Prediction head grid size, 16 or 32 for mobilenet
originalPicSize : original image size
Return:
anchorsInOrig : Tensor shape[#ofboxes*head width size*head height size,4], anchors are written in (cx, cy, w, h) form
'''
scale = originalPicSize/headgridSize
anchorsInOrig = torch.zeros([len(anchors)*headgridSize*headgridSize,4])
numOfAnchorBox = len(anchors)
for i in range(headgridSize):
for j in range(headgridSize):
for k in range(len(anchors)):
cx = j*scale + (scale+1)/2
cy = i*scale + (scale+1)/2
w, h = anchors[k]
tempAnch = torch.tensor([cx,cy,w,h])
anchorsInOrig[i*headgridSize*numOfAnchorBox + j*numOfAnchorBox + k,:]=tempAnch
# anchorsInOrig.requires_grad_(True) # does no effect result
return anchorsInOrig
def prepareHeadDataforLoss(HeadBB,HeadConf):
'''
Prepares prediction head tensors for loss calculation
E.g. If there are 4 BBs for the prediction head,
4 BB positions in delta form are written one under the other, for (x=0, y=0),(x=1, y=0)... of feature grid and returned
Args:
HeadBB : (tensor) Location head of the layer Shape[numofAncBoxesperCell * 4, head width, head height ]
Boxes -> [dcx, dcy, dw, dh ]
HeadConf : (tensor) Confidence head of the layer Shape[numofAncBoxesperCell * 2, head width, head height ]
Confidences -> (p(person), p(background))
Return:
BBs : (tensor) Predicted bounding boxes are written in delta form (dcx, dcy, dw, dh)
shape[numofAncBoxesperCell * head width * head height ,4] -> shape[4096,4] for 32x32 head
CFs : (tensor) Class confidences are written in (p(person), p(background))
shape[#ofPredperFeatureCell * head width * head height ,2] -> shape[4096,2] for 32x32 head
'''
width = HeadBB.shape[1]
height = HeadBB.shape[2]
numOfAnchorBox = int(HeadBB.shape[0]/4)
BBs = torch.zeros([width*height*numOfAnchorBox,4]).to(device)
CFs = torch.zeros([width*height*numOfAnchorBox,2]).to(device)
for i in range(width):
for j in range(height):
for k in range(numOfAnchorBox):
BBs[i*height*numOfAnchorBox + j*numOfAnchorBox + k,:] = HeadBB[k*4:k*4+4,i,j]
CFs[i*height*numOfAnchorBox + j*numOfAnchorBox + k,:] = HeadConf[k*2:k*2+2,i,j]
return BBs, CFs
def prepareHeadDataforLoss_fast(HeadBB,HeadConf):
'''
Same function with prepareHeadDataforLoss(), but blackbox faster implementation.
See details in prepareHeadDataforLoss()
'''
BBs = HeadBB.squeeze(0)
BBs = BBs.permute((1,2,0))
BBs = BBs.contiguous().view(-1,4)
CFs = HeadConf.squeeze(0)
CFs = CFs.permute((1,2,0))
CFs = CFs.contiguous().view(-1,2)
return BBs, CFs
# https://github.com/amdegroot/ssd.pytorch/blob/master/layers/box_utils.py
def point_form(boxes):
""" Convert box in form (cx, cy, w, h) to (xmin, ymin, xmax, ymax)
representation for comparison to point form ground truth data.
Args:
boxes: (tensor) boxes in (cx, cy, w, h) form
Return:
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
"""
return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, # xmin, ymin
boxes[:, :2] + boxes[:, 2:]/2), 1) # xmax, ymax
# https://github.com/amdegroot/ssd.pytorch/blob/master/layers/box_utils.py
def intersect(box_a, box_b):
""" We resize both tensors to [A,B,2] without new malloc:
[A,2] -> [A,1,2] -> [A,B,2]
[B,2] -> [1,B,2] -> [A,B,2]
Then we compute the area of intersect between box_a and box_b.
Args:
box_a: (tensor) bounding boxes, Shape: [A,4]. xmin, ymin, xmax, ymax form
box_b: (tensor) bounding boxes, Shape: [B,4].
Return:
(tensor) intersection area, Shape: [A,B].
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
A = box_a.size(0)
B = box_b.size(0)
box_a = box_a.to(device)
box_b = box_b.to(device)
max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
box_b[:, :2].unsqueeze(0).expand(A, B, 2))
inter = torch.clamp((max_xy - min_xy), min=0)
return inter[:, :, 0] * inter[:, :, 1]
def jaccard(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
is simply the intersection over union of two boxes. Here we operate on
ground truth boxes and default boxes.
E.g.:
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
Args:
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
Return:
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inter = intersect(box_a, box_b) # boxes are in the form of xmin, ymin, xmax, ymax
area_a = ((box_a[:, 2]-box_a[:, 0]) *
(box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
area_b = ((box_b[:, 2]-box_b[:, 0]) *
(box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
area_a = area_a.to(device)
area_b = area_b.to(device)
union = area_a + area_b - inter
return inter / union # [A,B]
def collate_fn(batch):
"""
Custom collate function.
Need to create own collate_fn Function for COCO.
Merges a list of samples to form a mini-batch of Tensor(s).
Used when using batched loading from a map-style dataset.
"""
return zip(*batch)
def sampleRandomPicsFromCOCO_old(train_loader, numtoPlot = 10, PictureSize = 512):
'''
This function is used to sample random pictures from COCO dataset
Args:
numtoPlot : number of random pictures to plot from dataset
Return:
SelectedPics : (tensor) size[numtoPlot, 3, PictureSize, PictureSize]
SelectedTargets: list[(tensor)] list of bounding boxes in COCO format for each picture
'''
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
numofbatches = len(train_loader)
batchsize = train_loader.batch_size
randomBatches = random.sample(range(0, numofbatches), numtoPlot)
selectedTargets = []
selectedPics = torch.zeros((numtoPlot,3,PictureSize,PictureSize)).to(device)
dataloader_iterator = iter(train_loader)
i = 0
batchnum = 0
while batchnum < numofbatches:
# print(batchnum)
if batchnum in randomBatches:
data = next(dataloader_iterator)
picnum = random.randrange(0, batchsize, 1)
randomBatches.remove(batchnum)
imageBatch, targetBatch, picNum = data
image = imageBatch[picnum].unsqueeze(0).clone().to(device)
target = targetBatch[picnum].clone().to(device)
selectedPics[i,:,:,:] = image
selectedTargets.append(target)
i += 1
else:
next(dataloader_iterator)
batchnum += 1
if not randomBatches:
break
return selectedPics, selectedTargets
def sampleRandomPicsFromCOCO(dataset, numtoPick = 10, pickSame = False):
'''
This function is used to sample random pictures from a COCO type dataset
Args:
dataset: dataset to be sampled
numtoPick : number of random pictures to pick from dataset
pickSame: if it is set to true,
Return:
SelectedPics : (tensor) size[numtoPlot, 3, PictureSize, PictureSize]
SelectedTargets: list[(tensor)] list of bounding boxes in COCO format for each picture
'''
if pickSame:
random.seed(1234)
else:
pass
random_indices = random.sample(range(len(dataset)), numtoPick)
rand_sampler = torch.utils.data.SubsetRandomSampler(random_indices)
loader = torch.utils.data.DataLoader(dataset,
sampler=rand_sampler,
batch_size=1,
collate_fn=collate_fn,
drop_last=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
selectedTargets = []
selectedPics = torch.zeros((numtoPick, 3, 512, 512)).to(device)
picIds = []
for i, data in enumerate(loader):
imageBatch, targetBatch, picNum = data
image = imageBatch[0].unsqueeze(0).to(device)
target = targetBatch[0].to(device)
selectedPics[i,:,:,:] = image
selectedTargets.append(target)
picIds.append(picNum[0])
return selectedPics, selectedTargets, picIds
def saveOutputs(pictures, picIds, targets, preds, anchors_head1, anchors_head2,
savefolderName='UnconstFPT',
nmsIoUTreshold = 0.45, predConfPlotTreshold = 0.6, figsize=(8,8)):
'''
Saves pictures,ground truths and model predictions under specified folder
'''
predsPostProcess = PredsPostProcess(512, anchors_head1, anchors_head2)
image_width = pictures.shape[2]
image_height = pictures.shape[3]
BBs1 = preds[0].clone()
CFs1 = preds[1].clone()
BBs2 = preds[2].clone()
CFs2 = preds[3].clone()
for imgNum in tqdm(range(0,pictures.shape[0])):
img = pictures[imgNum,:,:,:].clone()
target = targets[imgNum].clone()
pred = (BBs1[imgNum,:,:,:].unsqueeze(0), CFs1[imgNum,:,:,:].unsqueeze(0),
BBs2[imgNum,:,:,:].unsqueeze(0), CFs2[imgNum,:,:,:].unsqueeze(0))
id = picIds[imgNum]
absolute_boxes,person_cls = predsPostProcess.getPredsInOriginal(pred)
plot_image_mnv2_2xSSDlite(img, pred_person_cls = person_cls, pred_absolute_boxes = absolute_boxes, color = 'r'
,nmsIoUTreshold = nmsIoUTreshold, predConfPlotTreshold = predConfPlotTreshold,
target=target, figsize=figsize,
saveFig=True, imageID= id, folderName = savefolderName)
class PredsPostProcess:
'''
Class to convert mobilenet SSD heads to real image coordinates in form [xmin, ymin, xmax, ymax]
'''
def __init__(self, image_width, anchors_head1, anchors_head2):
Head1AnchorsForLoss = generateAnchorsInOrigImage(anchors_head1,headgridSize=32,originalPicSize=image_width)
Head2AnchorsForLoss = generateAnchorsInOrigImage(anchors_head2,headgridSize=16,originalPicSize=image_width)
AnchorsFlatten_wh = torch.cat((Head1AnchorsForLoss,Head2AnchorsForLoss),0) # shape[32x32x4+16x16x5, 4]
# boxes in form[cx, cy, w, h]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
AnchorsFlatten_wh = AnchorsFlatten_wh.to(device)
self.AnchorsFlatten_wh = AnchorsFlatten_wh
self.softmax_fcn = torch.nn.Softmax(dim=1).to(device)
self.var_x = 0.1
self.var_y = 0.1
self.var_w = 0.2
self.var_h = 0.2
def getPredsInOriginal(self,preds):
'''
Args:
preds: Prediction heads, i.e output of mobilenet model()
Return:
absolute_boxes: 32 * 32 *4 + 16 * 16 * 5 = 5376 pred BB's in form [imagenum, xmin, ymin, xmax, ymax]
(tensor) [5376, 5]
person cls: Person classification heads, (tensor) [5376,1]
'''
AnchorsFlatten_wh = self.AnchorsFlatten_wh
BBhires, CFhires = prepareHeadDataforLoss_fast(preds[0].data,preds[1].data)
BBlores, CFlores = prepareHeadDataforLoss_fast(preds[2].data,preds[3].data)
cls = torch.cat(( CFhires, CFlores))
cls = self.softmax_fcn(cls)
person_cls =cls[:,0]
delta_boxes_wh = torch.cat(( BBhires, BBlores))
pred_cx = delta_boxes_wh[:,0]*self.var_x*self.AnchorsFlatten_wh[:,2] + self.AnchorsFlatten_wh[:,0]
pred_cy = delta_boxes_wh[:,1]*self.var_y*self.AnchorsFlatten_wh[:,3] + self.AnchorsFlatten_wh[:,1]
pred_w = (delta_boxes_wh[:,2]*self.var_w).exp()*self.AnchorsFlatten_wh[:,2]
pred_h = (delta_boxes_wh[:,3]*self.var_h).exp()*self.AnchorsFlatten_wh[:,3]
absolute_xleft = pred_cx - pred_w/2
absolute_ytop = pred_cy - pred_h/2
absolute_xright = pred_cx + pred_w/2
absolute_ybottom = pred_cy + pred_h/2
absolute_boxes = torch.cat((absolute_xleft.view(-1,1), absolute_ytop.view(-1,1), absolute_xright.view(-1,1), absolute_ybottom.view(-1,1)), dim=1)
return absolute_boxes, person_cls
def mAP(cocoGT, cocoDT, imgIDS, catIDS=1, annType="bbox"):
"""
Explanation: This function calculate the mean average precision for given
ground truths and detection results. Default category and
annotation format is set to 'person' and 'bbox' respectively.
This function is based on popular benchmark function "pycocotools"
that is forked 3.3k. Please re-check the iou threshold (parameter iouThrs)
,which is default '.5:.05:.95', before you run the code.
Arguments:
cocoGT(Json File): Annotated orginal valset of COCO.
cocoDT(Json File): Model Results as format ===> [{"image_id":42, "category_id":18, "bbox":[258.15,41.29,348.26,243.78],"score":0.236},
{"image_id":73, "category_id":11, "bbox":[61,22.75,504,609.67], "score":0.318},
...]
imgIDS(list): list of image IDs.
catIDS(list): list of category ids. Default=1 as person.
annType(String): Annotation type, Default=bbox. Can be ['segm','bbox','keypoints'].
Returns:
None: just results as strings in terminal.
######################## More Detailed Guideline ########################
The usage for CocoEval is as follows: #
cocoGt=..., cocoDt=... # load dataset and results #
E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object #
E.params.recThrs = ...; # set parameters as desired #
E.evaluate(); # run per image evaluation #
E.accumulate(); # accumulate per image results #
E.summarize(); # display summary metrics of results #
#########################################################################
The evaluation parameters are as follows (defaults in brackets): #
imgIds - [all] N img ids to use for evaluation #
catIds - [all] K cat ids to use for evaluation #
iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation #
recThrs - [0:.01:1] R=101 recall thresholds for evaluation #
areaRng - [...] A=4 object area ranges for evaluation #
maxDets - [1 10 100] M=3 thresholds on max detections per image #
iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints' #
iouType replaced the now DEPRECATED useSegm parameter. #
useCats - [1] if true use category labels for evaluation #
Note: if useCats=0 category labels are ignored as in proposal scoring. #
Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. #
#########################################################################
evaluate(): evaluates detections on every image and every category and #
concats the results into the "evalImgs" with fields: #
dtIds - [1xD] id for each of the D detections (dt) #
gtIds - [1xG] id for each of the G ground truths (gt) #
dtMatches - [TxD] matching gt id at each IoU or 0 #
gtMatches - [TxG] matching dt id at each IoU or 0 #
dtScores - [1xD] confidence of each dt #
gtIgnore - [1xG] ignore flag for each gt #
dtIgnore - [TxD] ignore flag for each dt at each IoU #
#########################################################################
accumulate(): accumulates the per-image, per-category evaluation #
results in "evalImgs" into the dictionary "eval" with fields: #
params - parameters used for evaluation #
date - date evaluation was performed #
counts - [T,R,K,A,M] parameter dimensions (see above) #
precision - [TxRxKxAxM] precision for every evaluation setting #
recall - [TxKxAxM] max recall for every evaluation setting #
Note: precision and recall==-1 for settings with no gt objects. #
#########################################################################
***For more details of COCOeval please check: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
***If you need an orginal example from API please check: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
"""
cocoEval = COCOeval(cocoGT,cocoDT,annType)
cocoEval.params.imgIds = imgIDS
cocoEval.params.catIds = catIDS
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
def round_floats(o):
'''
Used to round floats before writing to json form
'''
if isinstance(o, float):
return round(o, 3)
if isinstance(o, dict):
return {k: round_floats(v) for k, v in o.items()}
if isinstance(o, (list, tuple)):
return [round_floats(x) for x in o]
return o
def get_FPnum_per_image(bbox, GT_bbox, min_IoU = 0.5):
''' Founds the number of False Positives by assocating detection BB's to GT BBs
Arguments:
-------------
bbox : list
N x 4 list of detection bounding boxes in xmin, ymin, w, h form
GT_bbox : list
N x 4 list of ground truth bounding boxes in xmin, ymin, w, h form
min_IoU : float [0,1]
Treshold of intersection of union to evaluate detection and GT to be matched, if IoU of Det and GT is below
this value they are automatically marked as unmatched
'''
bbox = torch.tensor(bbox)
# Convert x,y,w,h -> xmin, ymin, xmax, ymax
bbox[:,2] = bbox[:,0] + bbox[:,2]
bbox[:,3] = bbox[:,1] + bbox[:,3]
GT_bbox[:,2] = GT_bbox[:,0] + GT_bbox[:,2]
GT_bbox[:,3] = GT_bbox[:,1] + GT_bbox[:,3]
IoUscore = jaccard(GT_bbox, bbox)
num_det = IoUscore.shape[1]
num_TP = 0
GT_indexes = [x for x in range(IoUscore.shape[0])]
# all detections
for det_idx in range(IoUscore.shape[1]):
max_IoU = min_IoU
max_IoU_gt_id = None
# all remained unmatched GTs
for i, gt_idx in enumerate(GT_indexes):
currentIoU = IoUscore[gt_idx, det_idx]
if currentIoU > max_IoU:
max_IoU = currentIoU
max_IoU_gt_id = i
if max_IoU_gt_id is not None:
del GT_indexes[max_IoU_gt_id] # Remove GT from unmatcheds list
num_TP += 1
if len(GT_indexes) == 0:
break
FP_count_image = num_det - num_TP
return FP_count_image
def calculatemAP(model, test_loader,cocoGT, ANCHORS_HEAD1, ANCHORS_HEAD2 , PredMinConfTreshold=0.7 ,
nmsIoUTreshold = 0.5, mAPOnlyFirstBatch= False, calculate_FP_ratio=False, hardware_mode = False):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
t1 = time.time()
print('mAP calculation started...')
predsPostProcess = PredsPostProcess(512, ANCHORS_HEAD1, ANCHORS_HEAD2)
dataDictList =[]
imgIDS = []
model.eval()
total_GT_count = 0
total_FP_count = 0
with torch.no_grad():
for i, data in enumerate(tqdm(test_loader)):
imageBatch, targetBatch , idxBatch = data
imageStack = torch.stack(imageBatch).detach().to(device)
predBatch = model(imageStack)
# Outputs are in [-128, 127] in hw mode
if hardware_mode:
BBs1 = predBatch[0].detach() / 128.0
CFs1 = predBatch[1].detach() / 128.0
BBs2 = predBatch[2].detach() / 128.0
CFs2 = predBatch[3].detach() / 128.0
else:
BBs1 = predBatch[0].detach()
CFs1 = predBatch[1].detach()
BBs2 = predBatch[2].detach()
CFs2 = predBatch[3].detach()
for imgNum in range(imageStack.shape[0]):
img = imageStack[imgNum,:,:,:]
target = targetBatch[imgNum]
image_id = int(idxBatch[imgNum])
imgIDS.append(image_id)
pred = (BBs1[imgNum,:,:,:].unsqueeze(0), CFs1[imgNum,:,:,:].unsqueeze(0),
BBs2[imgNum,:,:,:].unsqueeze(0), CFs2[imgNum,:,:,:].unsqueeze(0))
absolute_boxes, person_cls = predsPostProcess.getPredsInOriginal(pred)
confidences = person_cls
boxes = absolute_boxes
nms_picks = torchvision.ops.nms(boxes, confidences, nmsIoUTreshold)
boxes_to_draw = boxes[nms_picks]
confs_to_draw = confidences[nms_picks]
# Predictions filtered by nms and conf tresholding, these will go to mAP
confMask = (confs_to_draw > PredMinConfTreshold)
# Accumulate total GT bounding box number to calculate total False Positive rate
if calculate_FP_ratio and (target.shape[0] != 0):
GT_bbox = target[:,1:]
total_GT_count += GT_bbox.shape[0]
# Inputs to mAP algorithm
if (confMask.any()):
# pred boxes -> [xmin,ymin,xmax,ymax], tensor shape[numpred,4]
bbox = boxes_to_draw[confMask]
# Convert BB to coco annot format -> [xmin,ymin,width, height]
bbox[:,2] = bbox[:,2] - bbox[:,0]
bbox[:,3] = bbox[:,3] - bbox[:,1]
bbox = bbox.tolist() # pred boxes -> [xmin,ymin,xmax,ymax], shape[numpred,4]
score = confs_to_draw[confMask].tolist()
category_id = np.ones_like(score,dtype=int).tolist()
for j in range(len(bbox)):
box = {"image_id":image_id, "category_id":category_id[j], "bbox":bbox[j],"score":score[j]}
dataDictList.append(round_floats(box))
# If detection exists and false positive ratio calculation is enabled
if calculate_FP_ratio:
# Note that scores are already in descending order thanks to nms operation
# No ground truth, all detections are FP
if GT_bbox.shape[0] == 0:
total_FP_count += len(score)
# Find false positives
else:
FP_count_image = get_FPnum_per_image(bbox, GT_bbox, min_IoU=0.5)
total_FP_count += FP_count_image
if mAPOnlyFirstBatch:
break
if (len(dataDictList)):
# Evavluate and Accumulate mAP for remained baches, if any
cocoDT = json.dumps(dataDictList)
# Write detections to .json file
with open('cocoDT.json', 'w') as outfile:
outfile.write(cocoDT)
# Load detections
cocoDT=cocoGT.loadRes('cocoDT.json')
# running evaluation
annType = 'bbox'
cocoEval = COCOeval(cocoGT,cocoDT,annType)
cocoEval.params.catIds = 1
cocoEval.params.imgIds = imgIDS
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# Print False Positive Statistics
if calculate_FP_ratio:
print()
print('********** False Positive Statistics **********')
print(f'Total GT Boxes: {total_GT_count}, Total FPs Boxes: {total_FP_count}, FP% : {total_FP_count/total_GT_count*100}')
print()
mean_ap = cocoEval.stats[0].item()
mean_recall = cocoEval.stats[8].item()
# Delete detection json file created
os.remove("cocoDT.json")
else:
mean_ap = 0
mean_recall = 0
t2 = time.time()
print(f'mAP done in : {t2-t1} secs')
return mean_ap, mean_recall
def batchNormAdaptation(model, train_loader,numSamples = 100):
'''
BN parameters of intel model is spoiled intentionally/or unintentionaly before publishing.
Batch norm adaptation routine is proposed before any training based on this model.
https://github.com/openvinotoolkit/nncf/blob/develop/docs/compression_algorithms/Quantization.md#batch-norm-statistics-adaptation
#numSamples predictions are made and running mean variance are recalculated for the layers.
'''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('')
print('Batch norm adaptation before training started.')
for i, data in enumerate(train_loader):
imageBatch, targetBatch, imgIDs = data
imageStack = torch.stack(imageBatch)
imageStack = imageStack.detach()
imageStack.requires_grad_(False)
imageStack = imageStack.to(device)
predBatch = model(imageStack)
if (i*len(imgIDs) >= numSamples):
return model
# Some functions to be used in training phase
def conv_model_fptunc2fpt(model):
layer_str_arr = [attr_name for attr_name in dir(model) if
isinstance(getattr(model, attr_name), qat_core.layers.shallow_base_layer)]
# Convert layers
for layer in layer_str_arr:
layer_attribute = getattr(model, layer)
layer_attribute.mode_fptunconstrained2fpt('fpt')
setattr(model, layer, layer_attribute)
# Convert add_residual modules.
add_res_attribute = getattr(model, 'add_residual')
add_res_attribute.mode_fptunconstrained2fpt('fpt')
setattr(model, 'add_residual', add_res_attribute)
return model
def conv_model_fpt2qat(model, weight_dictionary, shift_quantile=0.985):
print('Folding BNs and converting to qat mode')
layer_attributes = []
for layer_string in dir(model):
if(layer_string in weight_dictionary):
layer_attribute = getattr(model, layer_string)
if layer_attribute.mode == 'fpt':
print('Folding BN for:', layer_string)
weight_bits=weight_dictionary[layer_string]
print(f'Layer bit is : {weight_bits}')
# For binary weights convert layer in to qat_ap mode
if weight_bits == 1:
print('layer is converted in to qat_ap mode')
layer_attribute.configure_layer_base(weight_bits=2 , bias_bits=8, shift_quantile=shift_quantile)
layer_attribute.mode_fpt2qat('qat_ap');
# convert other layers in to qat mode
else:
print('layer is converted in to qat mode')
layer_attribute.configure_layer_base(weight_bits=weight_bits , bias_bits=8, shift_quantile=shift_quantile)
layer_attribute.mode_fpt2qat('qat');
setattr(model, layer_string, layer_attribute)
print('')
else:
print('To convert model to QAT mode, all layers must be in fpt mode but, ' + layer_string + 'is in' + layer_attribute.mode +' mode. Exiting...')
sys.exit()
add_res_attribute = getattr(model, 'add_residual')
if add_res_attribute.mode == 'fpt':
add_res_attribute.mode_fpt2qat('qat')
setattr(model, 'add_residual', add_res_attribute)
else:
print('To convert model to QAT mode, add_residual modüle must be in fpt mode but, it is in ' + add_res_attribute.mode + ' mode. Exiting...')
sys.exit()
print('********* Converting to qat mode finished *********')
print('')
return model
def conv_model_qat2hw(model):
print('Converting model to eval/hw mode for testing')
layer_str_arr = [attr_name for attr_name in dir(model) if
isinstance(getattr(model, attr_name), qat_core.layers.shallow_base_layer)]
for layer in layer_str_arr:
layer_attribute = getattr(model, layer)
if layer_attribute.mode == 'qat':
layer_attribute.mode_qat2hw('eval')
setattr(model, layer, layer_attribute)
# print(f'{layer} was in qat converted to eval mode')
elif layer_attribute.mode == 'qat_ap':
layer_attribute.mode_qat_ap2hw('eval')
setattr(model, layer, layer_attribute)
# print(f'{layer} was in qat_ap converted to eval mode')
else:
print('To convert model to hw mode, all layers must be in qat or qat_ap mode but, ' + layer_string + 'is in' + layer_attribute.mode +' mode. Exiting...')
sys.exit()
# print('')
model = model.to(model.conv1.op.weight.device.type)
# Convert add residual operation in to eval mode
add_res_attribute = getattr(model, 'add_residual')
if add_res_attribute.mode == 'qat':
add_res_attribute.mode_qat2hw('eval')
setattr(model, 'add_residual', add_res_attribute)
else:
print('To convert model to QAT mode, add_residual modüle must be in qat mode but, it is in ' + add_res_attribute.mode + ' mode. Exiting...')
sys.exit()
print('********* Converting model to eval/hw mode for testing finished *********')
print('')
return model |