File size: 48,905 Bytes
780c589
 
df8cf63
780c589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
###########################################################################
# Computer vision - Embedded person tracking demo software by HyperbeeAI. #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. [email protected] #
###########################################################################
import torch, torchvision, time, random
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import os
from datetime import datetime
from collections import Counter
import torchvision.ops as ops
from pycocotools.cocoeval import COCOeval
import json
from tqdm import tqdm


import qat_core

def ssd_postprocess_person_cls(pred):
    """
    Take the models prediction outputs (pred) and make the post processing operations to
    classification head outputs since the output is not directly class probabilities.
    Assuming square input image so H=W.
    Assuming binary classes (0/1).

    Input:
    - pred: predicted outputs of the model as list of length 4 as [output1_reg, output1_class, output2_reg, output2_class] 
            and shape of [(NR1, CR1, HR1, WR1), (NC1, CC1, HC1, WC1), (NR2, CR2, HR2, WR2), (NC2, CC2, HC2, WC2)].

    Returns:
    - person_cls: person class probabilities (torch.FloatTensor) shape of [CC1/2*HC1*WC1 + CC2/2*HC2*WC2].
    """
    head_regression_hires     = pred[0]
    head_classification_hires = pred[1]
    head_regression_lores     = pred[2]
    head_classification_lores = pred[3]

    # split classification head outputs for person and background
    head_classification_hires_background = head_classification_hires[0,1::2,:,:]
    head_classification_hires_person     = head_classification_hires[0,0::2,:,:]
    head_classification_lores_background = head_classification_lores[0,1::2,:,:]
    head_classification_lores_person     = head_classification_lores[0,0::2,:,:]

    ## assuming square input image so rows=cols
    ## I'll just define these globally:
    hires_rowscols   = head_regression_hires.shape[3] # could have been classification head too, just getting dimension
    lores_rowscols   = head_regression_lores.shape[3] # could have been classification head too, just getting dimension
    hires_numanchors = int(head_regression_hires.shape[1]/4) # 4 because xywh
    lores_numanchors = int(head_regression_lores.shape[1]/4) # 4 because xywh

    background_hires_flat = explicit_flatten(head_classification_hires_background, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    background_lores_flat = explicit_flatten(head_classification_lores_background, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    person_hires_flat     = explicit_flatten(head_classification_hires_person,     'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    person_lores_flat     = explicit_flatten(head_classification_lores_person,     'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    
    person_flat     = torch.cat((person_hires_flat, person_lores_flat))
    background_flat = torch.cat((background_hires_flat, background_lores_flat))

    total_cat      = torch.cat( ( torch.unsqueeze(person_flat,0) , torch.unsqueeze(background_flat,0) ) )
    softmax_fcn    = torch.nn.Softmax(dim=0)
    softmax_result = softmax_fcn(total_cat)

    person_hires_flat_sft = softmax_result[0,:][0:background_hires_flat.shape[0]]
    person_lores_flat_sft = softmax_result[0,:][background_hires_flat.shape[0]:]

    person_hires_classification_scores = explicit_unflatten(person_hires_flat_sft, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    person_lores_classification_scores = explicit_unflatten(person_lores_flat_sft, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)

    person_cls = torch.cat(( person_hires_flat_sft, person_lores_flat_sft ))

    return person_cls


def ssd_postprocess_person_bboxes(pred, image_width, image_height, anchors_head1, anchors_head2):
    """
    Take the models prediction output (pred) and make the post processing operations to
    show bboxes.
    Assuming square input image so H=W.
    Assuming binary classes (0/1).

    Input:
    - pred: predicted outputs of the model as list of length 4[output1_reg, output1_class, output2_reg, output2_class] 
            shape of [(NR1, CR1, HR1, WR1), (NC1, CC1, HC1, WC1), (NR2, CR2, HR2, WR2), (NC2, CC2, HC2, WC2)].
    - image_width:  Integer. 
    - image_height: Integer.
    - anchors_head1: list of length 4, contains image_width/image_height*anchor_ratios as tuples. 
                     shape [(W*A1, H*B1), (W*A2, H*B2), (W*A3, H*B3), (W*A4, H*B4)] where A#num and B#num are
                     corresponding different aspect ratios.
    - anchors_head2: list of length 4, contains image_width/image_height*anchor_ratios as tuples. 
                     shape [(W*C1, H*D1), (W*C2, H*D2), (W*C3, H*D3), (W*C4, H*D4)] where C#num and D#num are
                     corresponding different aspect ratios.
    Returns:
    - absolute_boxes: absolute value of bounding boxes (torch.FloatTensor) shape of [CR1/4*HR1*WR1 + CR2/4*HR2*WR2, 4]. 
    """
    head_regression_hires     = pred[0]
    head_classification_hires = pred[1]
    head_regression_lores     = pred[2]
    head_classification_lores = pred[3]

    ## assuming square input image so rows=cols
    ## I'll just define these globally:
    hires_rowscols   = head_regression_hires.shape[3] # could have been classification head too, just getting dimension
    lores_rowscols   = head_regression_lores.shape[3] # could have been classification head too, just getting dimension
    hires_numanchors = int(head_regression_hires.shape[1]/4) # 4 because xywh
    lores_numanchors = int(head_regression_lores.shape[1]/4) # 4 because xywh

    # Postprocess regression + classification together, i.e., apply NMS
    delta_x_hires = head_regression_hires[0, 0::4, :, :] # skip 4 means skip y,w,h and land on x again
    delta_y_hires = head_regression_hires[0, 1::4, :, :] # skip 4 means skip w,h,x and land on y again, etc...
    delta_w_hires = head_regression_hires[0, 2::4, :, :] 
    delta_h_hires = head_regression_hires[0, 3::4, :, :] 

    delta_x_lores = head_regression_lores[0, 0::4, :, :] # skip 4 means skip y,w,h and land on x again
    delta_y_lores = head_regression_lores[0, 1::4, :, :] # skip 4 means skip w,h,x and land on y again, etc...
    delta_w_lores = head_regression_lores[0, 2::4, :, :] 
    delta_h_lores = head_regression_lores[0, 3::4, :, :]

    
    ## There is also a concept called priorbox variance, see:
    ## https://github.com/weiliu89/caffe/issues/155#issuecomment-243541464
    ## https://leimao.github.io/blog/Bounding-Box-Encoding-Decoding/
    ##
    ## values taken from the xml, see layer "PriorBoxClustered":
    var_x = 0.1
    var_y = 0.1
    var_w = 0.2
    var_h = 0.2

    w_anchors_hires = torch.tensor(anchors_head1)[:,0]
    h_anchors_hires = torch.tensor(anchors_head1)[:,1]
    w_anchors_lores = torch.tensor(anchors_head2)[:,0]
    h_anchors_lores = torch.tensor(anchors_head2)[:,1]

    x_anchors_hires = populate_xy_anchors(delta_x_hires, 'x')
    y_anchors_hires = populate_xy_anchors(delta_y_hires, 'y')
    x_anchors_lores = populate_xy_anchors(delta_x_lores, 'x')
    y_anchors_lores = populate_xy_anchors(delta_y_lores, 'y')

    w_anchors_hires_rpt = populate_wh_anchors(delta_w_hires, w_anchors_hires)
    h_anchors_hires_rpt = populate_wh_anchors(delta_h_hires, h_anchors_hires)
    w_anchors_lores_rpt = populate_wh_anchors(delta_w_lores, w_anchors_lores)
    h_anchors_lores_rpt = populate_wh_anchors(delta_h_lores, h_anchors_lores)

    absolute_x_hires = delta_x_hires * w_anchors_hires_rpt * var_x + x_anchors_hires 
    absolute_y_hires = delta_y_hires * h_anchors_hires_rpt * var_y + y_anchors_hires
    absolute_x_lores = delta_x_lores * w_anchors_lores_rpt * var_x + x_anchors_lores
    absolute_y_lores = delta_y_lores * h_anchors_lores_rpt * var_y + y_anchors_lores

    absolute_w_hires = (delta_w_hires * var_w).exp() * w_anchors_hires_rpt 
    absolute_h_hires = (delta_h_hires * var_h).exp() * h_anchors_hires_rpt
    absolute_w_lores = (delta_w_lores * var_w).exp() * w_anchors_lores_rpt
    absolute_h_lores = (delta_h_lores * var_h).exp() * h_anchors_lores_rpt

    absolute_hires_xleft   = absolute_x_hires - absolute_w_hires/2
    absolute_hires_xright  = absolute_x_hires + absolute_w_hires/2
    absolute_hires_ytop    = absolute_y_hires - absolute_h_hires/2
    absolute_hires_ybottom = absolute_y_hires + absolute_h_hires/2

    absolute_lores_xleft   = absolute_x_lores - absolute_w_lores/2
    absolute_lores_xright  = absolute_x_lores + absolute_w_lores/2
    absolute_lores_ytop    = absolute_y_lores - absolute_h_lores/2
    absolute_lores_ybottom = absolute_y_lores + absolute_h_lores/2

    absolute_hires_xleft_flat   = explicit_flatten(absolute_hires_xleft,   'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    absolute_hires_xright_flat  = explicit_flatten(absolute_hires_xright,  'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    absolute_hires_ytop_flat    = explicit_flatten(absolute_hires_ytop,    'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    absolute_hires_ybottom_flat = explicit_flatten(absolute_hires_ybottom, 'hires', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)

    absolute_lores_xleft_flat   = explicit_flatten(absolute_lores_xleft,   'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    absolute_lores_xright_flat  = explicit_flatten(absolute_lores_xright,  'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    absolute_lores_ytop_flat    = explicit_flatten(absolute_lores_ytop,    'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)
    absolute_lores_ybottom_flat = explicit_flatten(absolute_lores_ybottom, 'lores', hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors)

    absolute_xleft   = torch.unsqueeze(torch.cat((absolute_hires_xleft_flat,   absolute_lores_xleft_flat))  ,1)
    absolute_xright  = torch.unsqueeze(torch.cat((absolute_hires_xright_flat,  absolute_lores_xright_flat)) ,1)
    absolute_ytop    = torch.unsqueeze(torch.cat((absolute_hires_ytop_flat,    absolute_lores_ytop_flat))   ,1)
    absolute_ybottom = torch.unsqueeze(torch.cat((absolute_hires_ybottom_flat, absolute_lores_ybottom_flat)),1)

    absolute_boxes = torch.cat((absolute_xleft, absolute_ytop, absolute_xright, absolute_ybottom), dim=1)
    return absolute_boxes



# so that we know what goes where
def explicit_flatten(tensor, hires_or_lores, hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors):
    flattened_tensor = torch.zeros_like(tensor.flatten())
    
    if(hires_or_lores=='hires'):
        rc = hires_rowscols
        na = hires_numanchors
    elif(hires_or_lores=='lores'):
        rc = lores_rowscols
        na = lores_numanchors
    else:
        print("somethings wrong")
        return
        
    for row in range(0, rc):
        for col in range(0, rc):
            for anc in range(0, na):
                flattened_tensor[anc*rc*rc + row*rc + col] = tensor[anc,row,col];
                
    return flattened_tensor

# so that we know what goes where
def explicit_unflatten(flattened_tensor, hires_or_lores, hires_rowscols, hires_numanchors, lores_rowscols, lores_numanchors):
    if(hires_or_lores=='hires'):
        tensor = torch.zeros((hires_numanchors, hires_rowscols, hires_rowscols))
        rc = hires_rowscols
        na = hires_numanchors
    elif(hires_or_lores=='lores'):
        tensor = torch.zeros((lores_numanchors, lores_rowscols, lores_rowscols))
        rc = lores_rowscols
        na = lores_numanchors
    else:
        print("somethings wrong")
        return
        
    for row in range(0, rc):
        for col in range(0, rc):
            for anc in range(0, na):
                tensor[anc,row,col] = flattened_tensor[anc*rc*rc + row*rc + col];
                
    return tensor


def plot_softmax_confidence_scores(person_hires_flat_sft, person_lores_flat_sft):
    fig, ax = plt.subplots(figsize=(10,6))
    ax.plot(person_hires_flat_sft.detach().cpu().numpy())
    ax.plot(person_lores_flat_sft.detach().cpu().numpy())
    ax.grid()
    ax.legend(['hires confidences', 'lores confidences'])
    plt.title('softmax-processed confidence scores for the two heads')
    plt.show()


def populate_wh_anchors(delta_ref, wh_anchors_hilores):
    wh_anchors_hilores_rpt = torch.ones_like(delta_ref)
    for i in range(0, wh_anchors_hilores_rpt.shape[0]):
        wh_anchors_hilores_rpt[i] = wh_anchors_hilores_rpt[i]*wh_anchors_hilores[i]

    return wh_anchors_hilores_rpt

def populate_xy_anchors(delta_ref, x_or_y):
    xy_anchors_hilores = torch.zeros_like(delta_ref)
    scale = 512 / delta_ref.shape[2]
    for i in range(0, xy_anchors_hilores.shape[0]): # count anchors
        for j in range(0, xy_anchors_hilores.shape[1]): # count width
            for k in range(0, xy_anchors_hilores.shape[2]): # count height
                if(x_or_y == 'x'):
                    xy_anchors_hilores[i,j,k] = scale * k + (scale +1) / 2 # More precise conversion
                if(x_or_y == 'y'):
                    xy_anchors_hilores[i,j,k] = scale * j + (scale +1) / 2
    return xy_anchors_hilores

def plot_image_mnv2_2xSSDlite(image, pred_person_cls = None, pred_absolute_boxes = None, color = 'r'
                              ,nmsIoUTreshold = 0.45, predConfPlotTreshold = 0.6,target=None, figsize=(16,16),
                              saveFig=False, imageID=None, folderName='UnconstFPT'):
    """ Plots original image, ground truths, and predictions if available. 
    Does non-maximum-suppression and plots perdiction boxes, saves figure under "Training Outputs" folder in specified folderName
    Args:
        image : (Tensor) Shape[Channel,width, height]
        pred_person_cls : (Tensor) person class confidences for predicted boxes Shape[numPred,1]
        pred_absolute_boxes : (Tensor) predicted boxes [xmin,ymin,xmax,ymax] Shape[numPred,4]
        color: Color of drawn predicted boxes
        nmsIoUTreshold : non max suppression IoU treshold
        predConfPlotTreshold : Confidence treshold to draw predicted boxes
        target : (Tensor) Ground truth boxes [pictureID, xmin, ymin, w, h] Shape[numGt, 5]
        folderName : Foldername under ./Model Outputs diectory to save figure. 
        
    Return: none
        
    """
    # if image is normalized to [-1,1], re-map it to [0,1] for plotting purposes
    if (image.min()<0):
        image[0,:,:] = (image[0,:,:]/2)+0.5
        image[1,:,:] = (image[1,:,:]/2)+0.5
        image[2,:,:] = (image[2,:,:]/2)+0.5

    image = image.permute(1, 2, 0).to("cpu")
    fig, ax = plt.subplots(figsize=figsize);
    
    if (saveFig):
        plt.ioff()
    else:
        plt.ion()
        
    ax.imshow(image,aspect='equal')
    
    # Draw ground truth boxes if available
    if (target != None):
        absolute_box_label = target.clone()
        if (absolute_box_label.shape[0] != 0):
            absolute_box_label = absolute_box_label[:,1:]
            absolute_box_label[:,2] = absolute_box_label[:,2] + absolute_box_label[:,0]
            absolute_box_label[:,3] = absolute_box_label[:,3] + absolute_box_label[:,1]

            for ii, box in enumerate(absolute_box_label):
                upper_left_x = box[0]
                upper_left_y = box[1]
                ww  = box[2] - box[0]
                hh  = box[3] - box[1]
                rect = patches.Rectangle(
                    (upper_left_x, upper_left_y),
                    ww, hh,
                    linewidth=5,
                    edgecolor='g',
                    facecolor="none",
                )
                ax.add_patch(rect);

    # Draw predicted absoulte boxes if available
    if (pred_absolute_boxes != None):
        confidences = pred_person_cls
        boxes       = pred_absolute_boxes 
        nms_picks   = torchvision.ops.nms(boxes, confidences, nmsIoUTreshold) 

        boxes_to_draw = boxes[nms_picks].detach().cpu().numpy()
        confs_to_draw = confidences[nms_picks].detach().cpu().numpy()

        for ii, box in enumerate(boxes_to_draw):
            if(confs_to_draw[ii] > predConfPlotTreshold):
                upper_left_x = box[0];
                upper_left_y = box[1];
                ww  = box[2] - box[0]
                hh  = box[3] - box[1]
                
                conf = "{:.3f}".format(confs_to_draw[ii])
                
                if not saveFig:
                    print(f'Conf{ii} : {confs_to_draw[ii]}')
                
                plt.text(upper_left_x,upper_left_y-5, conf, fontsize = 12,color= color)
                rect = patches.Rectangle(
                    (upper_left_x, upper_left_y),
                    ww, hh,
                    linewidth=2,
                    edgecolor=color,
                    facecolor="none",
                )
                ax.add_patch(rect);
    
    
    if saveFig:
        trainingOutpDir = os.path.join(".","Training Outputs")
        saveDir = os.path.join(trainingOutpDir,folderName)

        if not (os.path.isdir(trainingOutpDir)):
            os.mkdir(trainingOutpDir)

        if not (os.path.isdir(saveDir)):
            os.mkdir(saveDir)
            
        if (imageID == None):
            imageID = 'NA'
        else:
            imageID = str(int(imageID))
            

        imageName = folderName+"_ImgId_"+imageID+".png"
        imageDir = os.path.join(saveDir, imageName)
        plt.savefig(imageDir)
        plt.close('all')
        plt.cla()

    else:
        plt.show()
        plt.close('all')
    
    
def generateAnchorsInOrigImage(anchors,headgridSize,originalPicSize=512):
    '''
    Prepares anchor tensors in original image. 
    
    E.g. If there are 4 anchors for the prediction head, 
    4 anchor positions in original image are calculated for (x=0, y=0),(x=1, y=0)... feature grid, and written 
      one under the other to anchorsInOrig
    
    Args:
        anchors : (tuple) Tuple of anchor boxes in Tensor w,h form Tuple(Shape[numAnchors,2])
        headgridSize : Prediction head grid size, 16 or 32 for mobilenet
        originalPicSize : original image size
        
    Return:
        anchorsInOrig : Tensor shape[#ofboxes*head width size*head height size,4], anchors are written in (cx, cy, w, h) form
    '''
    scale = originalPicSize/headgridSize
    anchorsInOrig = torch.zeros([len(anchors)*headgridSize*headgridSize,4])
    numOfAnchorBox = len(anchors)
    for i in range(headgridSize):
        for j in range(headgridSize):
            for k in range(len(anchors)):
                cx = j*scale + (scale+1)/2
                cy = i*scale + (scale+1)/2
                w, h = anchors[k]
                tempAnch = torch.tensor([cx,cy,w,h])
                anchorsInOrig[i*headgridSize*numOfAnchorBox + j*numOfAnchorBox + k,:]=tempAnch
    
#     anchorsInOrig.requires_grad_(True) # does no effect result
    return anchorsInOrig 


def prepareHeadDataforLoss(HeadBB,HeadConf):
    '''
    Prepares prediction head tensors for loss calculation
    
    E.g. If there are 4 BBs for the prediction head, 
    4 BB positions in delta form are written one under the other,  for (x=0, y=0),(x=1, y=0)... of feature grid and returned
    
    Args:
        HeadBB : (tensor) Location head of the layer Shape[numofAncBoxesperCell * 4, head width, head height ]
            Boxes -> [dcx, dcy, dw, dh ]
        HeadConf : (tensor) Confidence head of the layer Shape[numofAncBoxesperCell * 2, head width, head height ]
            Confidences -> (p(person), p(background))
        
    Return:
        BBs : (tensor) Predicted bounding boxes are written in delta form (dcx, dcy, dw, dh) 
        shape[numofAncBoxesperCell * head width * head height ,4]  -> shape[4096,4] for 32x32 head
        
        CFs : (tensor) Class confidences are written in (p(person), p(background)) 
        shape[#ofPredperFeatureCell * head width * head height ,2]  -> shape[4096,2] for 32x32 head
    '''
    width = HeadBB.shape[1]
    height = HeadBB.shape[2]
    
    numOfAnchorBox = int(HeadBB.shape[0]/4)
    BBs = torch.zeros([width*height*numOfAnchorBox,4]).to(device)
    CFs = torch.zeros([width*height*numOfAnchorBox,2]).to(device)
    for i in range(width):
        for j in range(height):
            for k in range(numOfAnchorBox):
                BBs[i*height*numOfAnchorBox + j*numOfAnchorBox + k,:] = HeadBB[k*4:k*4+4,i,j]
                CFs[i*height*numOfAnchorBox + j*numOfAnchorBox + k,:] = HeadConf[k*2:k*2+2,i,j]
    
    return BBs, CFs


def prepareHeadDataforLoss_fast(HeadBB,HeadConf):
    '''
    Same function with prepareHeadDataforLoss(), but blackbox faster implementation. 
    See details in prepareHeadDataforLoss()
    '''

    BBs = HeadBB.squeeze(0)
    BBs = BBs.permute((1,2,0))
    BBs = BBs.contiguous().view(-1,4)

    CFs = HeadConf.squeeze(0)
    CFs = CFs.permute((1,2,0))
    CFs = CFs.contiguous().view(-1,2)
    return BBs, CFs


# https://github.com/amdegroot/ssd.pytorch/blob/master/layers/box_utils.py
def point_form(boxes):
    """ Convert box in form (cx, cy, w, h) to (xmin, ymin, xmax, ymax)
    representation for comparison to point form ground truth data.
    Args:
        boxes: (tensor) boxes in (cx, cy, w, h) form
    Return:
        boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
    """
    return torch.cat((boxes[:, :2] - boxes[:, 2:]/2,     # xmin, ymin
                     boxes[:, :2] + boxes[:, 2:]/2), 1)  # xmax, ymax

# https://github.com/amdegroot/ssd.pytorch/blob/master/layers/box_utils.py
def intersect(box_a, box_b):
    """ We resize both tensors to [A,B,2] without new malloc:
    [A,2] -> [A,1,2] -> [A,B,2]
    [B,2] -> [1,B,2] -> [A,B,2]
    Then we compute the area of intersect between box_a and box_b.
    Args:
      box_a: (tensor) bounding boxes, Shape: [A,4]. xmin, ymin, xmax, ymax form
      box_b: (tensor) bounding boxes, Shape: [B,4].
    Return:
      (tensor) intersection area, Shape: [A,B].
    """
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    A = box_a.size(0)
    B = box_b.size(0)
    box_a = box_a.to(device)
    box_b = box_b.to(device)
    max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
                       box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
    min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
                       box_b[:, :2].unsqueeze(0).expand(A, B, 2))
    inter = torch.clamp((max_xy - min_xy), min=0)
    return inter[:, :, 0] * inter[:, :, 1]

def jaccard(box_a, box_b):
    """Compute the jaccard overlap of two sets of boxes.  The jaccard overlap
    is simply the intersection over union of two boxes.  Here we operate on
    ground truth boxes and default boxes.
    E.g.:
        A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
    Args:
        box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
        box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
    Return:
        jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
    """
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    inter = intersect(box_a, box_b) # boxes are in the form of xmin, ymin, xmax, ymax
    area_a = ((box_a[:, 2]-box_a[:, 0]) *
              (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter)  # [A,B]
    area_b = ((box_b[:, 2]-box_b[:, 0]) *
              (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter)  # [A,B]
    
    area_a = area_a.to(device)
    area_b = area_b.to(device)
    union = area_a + area_b - inter
    return inter / union  # [A,B]

def collate_fn(batch):
    """
    Custom collate function.
    Need to create own collate_fn Function for COCO.
    Merges a list of samples to form a mini-batch of Tensor(s).
    Used when using batched loading from a map-style dataset.
    """
    return zip(*batch)

def sampleRandomPicsFromCOCO_old(train_loader, numtoPlot = 10, PictureSize = 512): 
    '''
    This function is used to sample random pictures from COCO dataset
    
    Args: 
    numtoPlot : number of random pictures to plot from dataset
    
    Return: 
    SelectedPics : (tensor) size[numtoPlot, 3, PictureSize, PictureSize]
    SelectedTargets: list[(tensor)] list of bounding boxes in COCO format for each picture

    '''
    import random
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    numofbatches = len(train_loader)
    batchsize = train_loader.batch_size
    randomBatches = random.sample(range(0, numofbatches), numtoPlot)

    selectedTargets = []
    selectedPics = torch.zeros((numtoPlot,3,PictureSize,PictureSize)).to(device)
    dataloader_iterator = iter(train_loader)

    
    i = 0
    batchnum = 0    
    while batchnum < numofbatches:
#         print(batchnum)
        if batchnum in randomBatches:
            data = next(dataloader_iterator)
            picnum = random.randrange(0, batchsize, 1)
            randomBatches.remove(batchnum)

            imageBatch, targetBatch, picNum = data
            image = imageBatch[picnum].unsqueeze(0).clone().to(device) 
            target = targetBatch[picnum].clone().to(device) 

            selectedPics[i,:,:,:] = image
            selectedTargets.append(target)
            i += 1
        else:
            next(dataloader_iterator)
            
        batchnum += 1 

        if not randomBatches:
            break
            
    return selectedPics, selectedTargets


def sampleRandomPicsFromCOCO(dataset, numtoPick = 10, pickSame = False): 
    '''
    This function is used to sample random pictures from a COCO type dataset
    
    Args:
    dataset: dataset to be sampled
    numtoPick : number of random pictures to pick from dataset
    pickSame: if it is set to true, 
    
    Return: 
    SelectedPics : (tensor) size[numtoPlot, 3, PictureSize, PictureSize]
    SelectedTargets: list[(tensor)] list of bounding boxes in COCO format for each picture
    '''
    
    if pickSame:
        random.seed(1234)
    else:
        pass
    
    random_indices = random.sample(range(len(dataset)), numtoPick)
    
    rand_sampler = torch.utils.data.SubsetRandomSampler(random_indices)
    loader = torch.utils.data.DataLoader(dataset,
                        sampler=rand_sampler,
                        batch_size=1,
                        collate_fn=collate_fn,
                        drop_last=False)
     
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    selectedTargets = []
    selectedPics = torch.zeros((numtoPick, 3, 512, 512)).to(device)
    picIds = []
    
    for i, data in enumerate(loader):
        imageBatch, targetBatch, picNum = data
        image = imageBatch[0].unsqueeze(0).to(device) 
        target = targetBatch[0].to(device) 

        selectedPics[i,:,:,:] = image
        selectedTargets.append(target)
        picIds.append(picNum[0])
    
    return selectedPics, selectedTargets, picIds


def saveOutputs(pictures, picIds, targets, preds, anchors_head1, anchors_head2,
                savefolderName='UnconstFPT',
                nmsIoUTreshold = 0.45, predConfPlotTreshold = 0.6, figsize=(8,8)):
    '''
    Saves pictures,ground truths and model predictions under specified folder
    '''
    predsPostProcess = PredsPostProcess(512, anchors_head1, anchors_head2)
    
    image_width = pictures.shape[2]
    image_height = pictures.shape[3]
    
    BBs1 = preds[0].clone()
    CFs1 = preds[1].clone()
    BBs2 = preds[2].clone()
    CFs2 = preds[3].clone()
    
    for imgNum in tqdm(range(0,pictures.shape[0])):
    
        img = pictures[imgNum,:,:,:].clone()
        target = targets[imgNum].clone()
        pred = (BBs1[imgNum,:,:,:].unsqueeze(0), CFs1[imgNum,:,:,:].unsqueeze(0), 
                BBs2[imgNum,:,:,:].unsqueeze(0), CFs2[imgNum,:,:,:].unsqueeze(0))
        id = picIds[imgNum]

        absolute_boxes,person_cls = predsPostProcess.getPredsInOriginal(pred)
    
        plot_image_mnv2_2xSSDlite(img, pred_person_cls = person_cls, pred_absolute_boxes = absolute_boxes, color = 'r'
                              ,nmsIoUTreshold = nmsIoUTreshold, predConfPlotTreshold = predConfPlotTreshold,
                              target=target, figsize=figsize,
                              saveFig=True, imageID= id, folderName = savefolderName)

class PredsPostProcess:
    '''
    Class to convert mobilenet SSD heads to real image coordinates in form [xmin, ymin, xmax, ymax]
    
    '''
    def __init__(self, image_width, anchors_head1, anchors_head2):
        Head1AnchorsForLoss = generateAnchorsInOrigImage(anchors_head1,headgridSize=32,originalPicSize=image_width)
        Head2AnchorsForLoss = generateAnchorsInOrigImage(anchors_head2,headgridSize=16,originalPicSize=image_width)
        AnchorsFlatten_wh = torch.cat((Head1AnchorsForLoss,Head2AnchorsForLoss),0) # shape[32x32x4+16x16x5, 4] 
                                                                                   # boxes in form[cx, cy, w, h]
        
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        AnchorsFlatten_wh = AnchorsFlatten_wh.to(device)
        self.AnchorsFlatten_wh = AnchorsFlatten_wh
        self.softmax_fcn    = torch.nn.Softmax(dim=1).to(device)
        self.var_x = 0.1
        self.var_y = 0.1
        self.var_w = 0.2
        self.var_h = 0.2
    
    def getPredsInOriginal(self,preds):
        '''
            Args: 
                preds: Prediction heads, i.e output of mobilenet model()
                
            Return: 
                absolute_boxes: 32 * 32 *4  + 16 * 16 * 5 = 5376 pred BB's in form [imagenum, xmin, ymin, xmax, ymax]
                                (tensor) [5376, 5]
                person cls: Person classification heads, (tensor) [5376,1]
                
        '''
        AnchorsFlatten_wh = self.AnchorsFlatten_wh
        BBhires, CFhires = prepareHeadDataforLoss_fast(preds[0].data,preds[1].data)
        BBlores, CFlores = prepareHeadDataforLoss_fast(preds[2].data,preds[3].data)

        
        cls = torch.cat(( CFhires, CFlores))
        cls = self.softmax_fcn(cls)
        person_cls =cls[:,0]

        delta_boxes_wh = torch.cat(( BBhires, BBlores))

        pred_cx = delta_boxes_wh[:,0]*self.var_x*self.AnchorsFlatten_wh[:,2] + self.AnchorsFlatten_wh[:,0]
        pred_cy = delta_boxes_wh[:,1]*self.var_y*self.AnchorsFlatten_wh[:,3] + self.AnchorsFlatten_wh[:,1]
        pred_w = (delta_boxes_wh[:,2]*self.var_w).exp()*self.AnchorsFlatten_wh[:,2]
        pred_h = (delta_boxes_wh[:,3]*self.var_h).exp()*self.AnchorsFlatten_wh[:,3]

        absolute_xleft = pred_cx - pred_w/2
        absolute_ytop = pred_cy - pred_h/2
        absolute_xright = pred_cx + pred_w/2
        absolute_ybottom = pred_cy + pred_h/2

        absolute_boxes = torch.cat((absolute_xleft.view(-1,1), absolute_ytop.view(-1,1), absolute_xright.view(-1,1), absolute_ybottom.view(-1,1)), dim=1)

        return absolute_boxes, person_cls
    
        
def mAP(cocoGT, cocoDT, imgIDS, catIDS=1, annType="bbox"):
    """
    Explanation: This function calculate the mean average precision for given
                 ground truths and detection results. Default category and
                 annotation format is set to 'person' and 'bbox' respectively.
                 This function is based on popular benchmark function "pycocotools"
                 that is forked 3.3k. Please re-check the iou threshold (parameter iouThrs)
                 ,which is default '.5:.05:.95', before you run the code.
    Arguments:
        cocoGT(Json File): Annotated orginal valset of COCO.
        cocoDT(Json File): Model Results as format ===> [{"image_id":42, "category_id":18, "bbox":[258.15,41.29,348.26,243.78],"score":0.236}, 
                                                         {"image_id":73, "category_id":11, "bbox":[61,22.75,504,609.67],       "score":0.318}, 
                                                          ...]
        imgIDS(list): list of image IDs.
        catIDS(list): list of category ids. Default=1 as person.
        annType(String): Annotation type, Default=bbox. Can be ['segm','bbox','keypoints'].
    Returns:
        None: just results as strings in terminal.
    ######################## More Detailed Guideline ########################
    The usage for CocoEval is as follows:                                   #
       cocoGt=..., cocoDt=...       # load dataset and results              #
       E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object            #
       E.params.recThrs = ...;      # set parameters as desired             #
       E.evaluate();                # run per image evaluation              #
       E.accumulate();              # accumulate per image results          #
       E.summarize();               # display summary metrics of results    #
    #########################################################################
    The evaluation parameters are as follows (defaults in brackets):        #
       imgIds     - [all] N img ids to use for evaluation                   #
       catIds     - [all] K cat ids to use for evaluation                   #
       iouThrs    - [.5:.05:.95] T=10 IoU thresholds for evaluation         #
       recThrs    - [0:.01:1] R=101 recall thresholds for evaluation        #
       areaRng    - [...] A=4 object area ranges for evaluation             #
       maxDets    - [1 10 100] M=3 thresholds on max detections per image   #
       iouType    - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'   #
       iouType replaced the now DEPRECATED useSegm parameter.               #
       useCats    - [1] if true use category labels for evaluation          #
    Note: if useCats=0 category labels are ignored as in proposal scoring.  #
    Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified.       #
    #########################################################################
    evaluate(): evaluates detections on every image and every category and  #
    concats the results into the "evalImgs" with fields:                    #
       dtIds      - [1xD] id for each of the D detections (dt)              #
       gtIds      - [1xG] id for each of the G ground truths (gt)           #
       dtMatches  - [TxD] matching gt id at each IoU or 0                   #
       gtMatches  - [TxG] matching dt id at each IoU or 0                   #
       dtScores   - [1xD] confidence of each dt                             #
       gtIgnore   - [1xG] ignore flag for each gt                           #
       dtIgnore   - [TxD] ignore flag for each dt at each IoU               #
    #########################################################################
    accumulate(): accumulates the per-image, per-category evaluation        #
    results in "evalImgs" into the dictionary "eval" with fields:           #
       params     - parameters used for evaluation                          #
       date       - date evaluation was performed                           #
       counts     - [T,R,K,A,M] parameter dimensions (see above)            #
       precision  - [TxRxKxAxM] precision for every evaluation setting      #
       recall     - [TxKxAxM] max recall for every evaluation setting       #
    Note: precision and recall==-1 for settings with no gt objects.         #
    #########################################################################
    ***For more details of COCOeval please check: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
    ***If you need an orginal example from API please check: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
    """
    
    cocoEval = COCOeval(cocoGT,cocoDT,annType)
    cocoEval.params.imgIds = imgIDS
    cocoEval.params.catIds = catIDS
    cocoEval.evaluate()
    cocoEval.accumulate()
    cocoEval.summarize()
    
    
def round_floats(o):
    '''
    Used to round floats before writing to json form
    '''
    if isinstance(o, float):
        return round(o, 3)
    if isinstance(o, dict):
        return {k: round_floats(v) for k, v in o.items()}
    if isinstance(o, (list, tuple)):
        return [round_floats(x) for x in o]
    return o


def get_FPnum_per_image(bbox, GT_bbox, min_IoU = 0.5):
    ''' Founds the number of False Positives by assocating detection BB's to GT BBs
    
    Arguments:
    -------------
    bbox : list
        N x 4 list of detection bounding boxes in xmin, ymin, w, h form
    GT_bbox : list
        N x 4 list of ground truth bounding boxes in xmin, ymin, w, h form
    min_IoU : float [0,1]
        Treshold of intersection of union to evaluate detection and GT to be matched, if IoU of Det and GT is below
        this value they are automatically marked as unmatched
    '''
    
    bbox = torch.tensor(bbox)

    # Convert x,y,w,h -> xmin, ymin, xmax, ymax
    bbox[:,2] = bbox[:,0] + bbox[:,2]
    bbox[:,3] = bbox[:,1] + bbox[:,3]

    GT_bbox[:,2] = GT_bbox[:,0] + GT_bbox[:,2]
    GT_bbox[:,3] = GT_bbox[:,1] + GT_bbox[:,3]

    IoUscore = jaccard(GT_bbox, bbox)

    num_det = IoUscore.shape[1]
    num_TP = 0
    GT_indexes = [x for x in range(IoUscore.shape[0])]

    # all detections
    for det_idx in range(IoUscore.shape[1]):
        
        max_IoU = min_IoU
        max_IoU_gt_id = None

        # all remained unmatched GTs
        for i, gt_idx in enumerate(GT_indexes):
            currentIoU = IoUscore[gt_idx, det_idx]
            if currentIoU > max_IoU:
                max_IoU = currentIoU
                max_IoU_gt_id = i

        if max_IoU_gt_id is not None:
            del GT_indexes[max_IoU_gt_id] # Remove GT from unmatcheds list
            num_TP += 1

        if len(GT_indexes) == 0:
            break

    FP_count_image = num_det - num_TP
    return FP_count_image


def calculatemAP(model, test_loader,cocoGT, ANCHORS_HEAD1, ANCHORS_HEAD2 , PredMinConfTreshold=0.7 , 
                 nmsIoUTreshold = 0.5, mAPOnlyFirstBatch= False, calculate_FP_ratio=False, hardware_mode = False):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    t1 = time.time()
    print('mAP calculation started...')
    predsPostProcess = PredsPostProcess(512, ANCHORS_HEAD1, ANCHORS_HEAD2)

    dataDictList =[]
    imgIDS = []
    model.eval()
    
    total_GT_count = 0
    total_FP_count = 0
    
    with torch.no_grad():
        for i, data in enumerate(tqdm(test_loader)):

            imageBatch, targetBatch , idxBatch = data

            imageStack = torch.stack(imageBatch).detach().to(device)
            predBatch = model(imageStack)
            
            # Outputs are in [-128, 127] in hw mode 
            if hardware_mode:
                BBs1 = predBatch[0].detach() / 128.0
                CFs1 = predBatch[1].detach() / 128.0
                BBs2 = predBatch[2].detach() / 128.0
                CFs2 = predBatch[3].detach() / 128.0
            else:
                BBs1 = predBatch[0].detach()
                CFs1 = predBatch[1].detach()
                BBs2 = predBatch[2].detach()
                CFs2 = predBatch[3].detach()

            for imgNum in range(imageStack.shape[0]):

                img = imageStack[imgNum,:,:,:]
                target = targetBatch[imgNum]
                image_id = int(idxBatch[imgNum])
                imgIDS.append(image_id)

                pred = (BBs1[imgNum,:,:,:].unsqueeze(0), CFs1[imgNum,:,:,:].unsqueeze(0), 
                        BBs2[imgNum,:,:,:].unsqueeze(0), CFs2[imgNum,:,:,:].unsqueeze(0))

                absolute_boxes, person_cls = predsPostProcess.getPredsInOriginal(pred)

                confidences = person_cls
                boxes       = absolute_boxes 
                nms_picks   = torchvision.ops.nms(boxes, confidences, nmsIoUTreshold) 
                boxes_to_draw = boxes[nms_picks]
                confs_to_draw = confidences[nms_picks]

                # Predictions filtered by nms and conf tresholding, these will go to mAP
                confMask = (confs_to_draw > PredMinConfTreshold)
                
                # Accumulate total GT bounding box number to calculate total False Positive rate 
                if calculate_FP_ratio and (target.shape[0] != 0):
                    GT_bbox = target[:,1:]
                    total_GT_count += GT_bbox.shape[0]
                    
                # Inputs to mAP algorithm
                if (confMask.any()):

                    # pred boxes -> [xmin,ymin,xmax,ymax], tensor shape[numpred,4]
                    bbox = boxes_to_draw[confMask]
                    # Convert BB to coco annot format -> [xmin,ymin,width, height]
                    bbox[:,2] = bbox[:,2] - bbox[:,0]
                    bbox[:,3] = bbox[:,3] - bbox[:,1]

                    bbox = bbox.tolist() # pred boxes -> [xmin,ymin,xmax,ymax], shape[numpred,4]
                    score = confs_to_draw[confMask].tolist()
                    category_id = np.ones_like(score,dtype=int).tolist()

                    for j in range(len(bbox)):
                        box = {"image_id":image_id, "category_id":category_id[j], "bbox":bbox[j],"score":score[j]}
                        dataDictList.append(round_floats(box))
                        
                    # If detection exists and false positive ratio calculation is enabled
                    if calculate_FP_ratio:
                        # Note that scores are already in descending order thanks to nms operation
                        # No ground truth, all detections are FP
                        if GT_bbox.shape[0] == 0:
                            total_FP_count += len(score)

                        # Find false positives
                        else:
                            FP_count_image = get_FPnum_per_image(bbox, GT_bbox, min_IoU=0.5)
                            total_FP_count += FP_count_image

            if mAPOnlyFirstBatch:
                break
                    
    if (len(dataDictList)):        
        # Evavluate and Accumulate mAP for remained baches, if any
        cocoDT = json.dumps(dataDictList)

        # Write detections to .json file
        with open('cocoDT.json', 'w') as outfile:
            outfile.write(cocoDT) 

        # Load detections
        cocoDT=cocoGT.loadRes('cocoDT.json')

        # running evaluation
        annType = 'bbox'
        cocoEval = COCOeval(cocoGT,cocoDT,annType)
        cocoEval.params.catIds = 1
        cocoEval.params.imgIds  = imgIDS
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        
        # Print False Positive Statistics
        if calculate_FP_ratio:
            print()
            print('********** False Positive Statistics **********')
            print(f'Total GT Boxes: {total_GT_count}, Total FPs Boxes: {total_FP_count}, FP% : {total_FP_count/total_GT_count*100}')
            print()
        

        mean_ap = cocoEval.stats[0].item()
        mean_recall = cocoEval.stats[8].item()

        # Delete detection json file created
        os.remove("cocoDT.json")
    else:
        mean_ap = 0
        mean_recall = 0
    t2 = time.time()
    print(f'mAP done in : {t2-t1} secs')
    return mean_ap, mean_recall


def batchNormAdaptation(model, train_loader,numSamples = 100):
    '''
    BN parameters of intel model is spoiled intentionally/or unintentionaly before publishing.
    Batch norm adaptation routine is proposed before any training based on this model.
    https://github.com/openvinotoolkit/nncf/blob/develop/docs/compression_algorithms/Quantization.md#batch-norm-statistics-adaptation
    #numSamples predictions are made and running mean variance are recalculated for the layers. 
    '''
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
    print('')
    print('Batch norm adaptation before training started.')


    for i, data in enumerate(train_loader):

        imageBatch, targetBatch, imgIDs = data

        imageStack = torch.stack(imageBatch)
        imageStack = imageStack.detach()
        imageStack.requires_grad_(False)
        imageStack = imageStack.to(device)

        predBatch = model(imageStack)
        if (i*len(imgIDs) >= numSamples):        
            return model

# Some functions to be used in training phase
def conv_model_fptunc2fpt(model):
    layer_str_arr = [attr_name for attr_name in dir(model) if
                     isinstance(getattr(model, attr_name), qat_core.layers.shallow_base_layer)]
    # Convert layers
    for layer in layer_str_arr:
        layer_attribute = getattr(model, layer)
        layer_attribute.mode_fptunconstrained2fpt('fpt')
        setattr(model, layer, layer_attribute)
    
    # Convert add_residual modules.
    add_res_attribute = getattr(model, 'add_residual')
    add_res_attribute.mode_fptunconstrained2fpt('fpt')
    setattr(model, 'add_residual', add_res_attribute)
        
    return model


def conv_model_fpt2qat(model, weight_dictionary, shift_quantile=0.985):
    print('Folding BNs and converting to qat mode')
    layer_attributes = []
    for layer_string in dir(model):
        if(layer_string in weight_dictionary):
            layer_attribute = getattr(model, layer_string)
            
            if layer_attribute.mode == 'fpt':
                print('Folding BN for:', layer_string)
                weight_bits=weight_dictionary[layer_string]
                print(f'Layer bit is : {weight_bits}')
                
                # For binary weights convert layer in to qat_ap mode
                if weight_bits == 1:
                    print('layer is converted in to qat_ap mode')
                    layer_attribute.configure_layer_base(weight_bits=2 , bias_bits=8, shift_quantile=shift_quantile)
                    layer_attribute.mode_fpt2qat('qat_ap');
                # convert other layers in to qat mode
                else:
                    print('layer is converted in to qat mode')
                    layer_attribute.configure_layer_base(weight_bits=weight_bits , bias_bits=8, shift_quantile=shift_quantile)
                    layer_attribute.mode_fpt2qat('qat');
                
                setattr(model, layer_string, layer_attribute)
                print('')
                
            else:
                print('To convert model to QAT mode, all layers must be in fpt mode but, ' + layer_string + 'is in' + layer_attribute.mode +' mode. Exiting...')
                sys.exit()

    add_res_attribute = getattr(model, 'add_residual')
    if add_res_attribute.mode == 'fpt':
        add_res_attribute.mode_fpt2qat('qat')
        setattr(model, 'add_residual', add_res_attribute)
    else:
        print('To convert model to QAT mode, add_residual modüle must be in fpt mode but, it is in ' + add_res_attribute.mode + ' mode. Exiting...')
        sys.exit()
    
    print('********* Converting to qat mode finished *********')
    print('')
    return model

def conv_model_qat2hw(model):
    print('Converting model to eval/hw mode for testing')
    
    layer_str_arr = [attr_name for attr_name in dir(model) if
                     isinstance(getattr(model, attr_name), qat_core.layers.shallow_base_layer)]
    
    for layer in layer_str_arr:
        layer_attribute = getattr(model, layer)

        if layer_attribute.mode == 'qat':
            layer_attribute.mode_qat2hw('eval')
            setattr(model, layer, layer_attribute)
#             print(f'{layer} was in qat converted to eval mode')
        elif layer_attribute.mode == 'qat_ap':
            layer_attribute.mode_qat_ap2hw('eval')
            setattr(model, layer, layer_attribute)
#             print(f'{layer} was in qat_ap converted to eval mode')
        else: 
            print('To convert model to hw mode, all layers must be in qat or qat_ap mode but, ' + layer_string + 'is in' + layer_attribute.mode +' mode. Exiting...')
            sys.exit()
#         print('')
    model  = model.to(model.conv1.op.weight.device.type)
    
    # Convert add residual operation in to eval mode
    add_res_attribute = getattr(model, 'add_residual')
    if add_res_attribute.mode == 'qat':
        add_res_attribute.mode_qat2hw('eval')
        setattr(model, 'add_residual', add_res_attribute)
    else:
        print('To convert model to QAT mode, add_residual modüle must be in qat mode but, it is in ' + add_res_attribute.mode + ' mode. Exiting...')
        sys.exit()
    
    print('********* Converting model to eval/hw mode for testing finished *********')
    print('')
    return model