|
|
|
|
|
|
|
|
|
""" |
|
This is a modified version of SORT algorithm, tentative-confirmed |
|
track mechanism, prediction without detection are added. |
|
|
|
SORT: A Simple, Online and Realtime Tracker |
|
Copyright (C) 2016-2020 Alex Bewley [email protected] |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
""" |
|
from __future__ import print_function |
|
|
|
import os |
|
import numpy as np |
|
import glob |
|
import time |
|
import argparse |
|
|
|
from filterpy.kalman import KalmanFilter |
|
|
|
|
|
|
|
|
|
def linear_assignment(cost_matrix): |
|
try: |
|
import lap |
|
_, x, y = lap.lapjv(cost_matrix, extend_cost=True) |
|
return np.array([[y[i],i] for i in x if i >= 0]) |
|
except ImportError: |
|
from scipy.optimize import linear_sum_assignment |
|
x, y = linear_sum_assignment(cost_matrix) |
|
return np.array(list(zip(x, y))) |
|
|
|
|
|
def iou_batch(bb_test, bb_gt): |
|
""" |
|
From SORT: Computes IOU between two bboxes in the form [x1,y1,x2,y2] |
|
""" |
|
bb_gt = np.expand_dims(bb_gt, 0) |
|
bb_test = np.expand_dims(bb_test, 1) |
|
|
|
xx1 = np.maximum(bb_test[..., 0], bb_gt[..., 0]) |
|
yy1 = np.maximum(bb_test[..., 1], bb_gt[..., 1]) |
|
xx2 = np.minimum(bb_test[..., 2], bb_gt[..., 2]) |
|
yy2 = np.minimum(bb_test[..., 3], bb_gt[..., 3]) |
|
w = np.maximum(0., xx2 - xx1) |
|
h = np.maximum(0., yy2 - yy1) |
|
wh = w * h |
|
o = wh / ((bb_test[..., 2] - bb_test[..., 0]) * (bb_test[..., 3] - bb_test[..., 1]) |
|
+ (bb_gt[..., 2] - bb_gt[..., 0]) * (bb_gt[..., 3] - bb_gt[..., 1]) - wh) |
|
return(o) |
|
|
|
|
|
def convert_bbox_to_z(bbox): |
|
""" |
|
Takes a bounding box in the form [x1,y1,x2,y2] and returns z in the form |
|
[x,y,s,r] where x,y is the centre of the box and s is the scale/area and r is |
|
the aspect ratio |
|
""" |
|
w = bbox[2] - bbox[0] |
|
h = bbox[3] - bbox[1] |
|
x = bbox[0] + w/2. |
|
y = bbox[1] + h/2. |
|
s = w * h |
|
r = w / float(h) |
|
return np.array([x, y, s, r]).reshape((4, 1)) |
|
|
|
|
|
def convert_x_to_bbox(x,score=None): |
|
""" |
|
Takes a bounding box in the centre form [x,y,s,r] and returns it in the form |
|
[x1,y1,x2,y2] where x1,y1 is the top left and x2,y2 is the bottom right |
|
""" |
|
w = np.sqrt(x[2] * x[3]) |
|
h = x[2] / w |
|
if(score==None): |
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.]).reshape((1,4)) |
|
else: |
|
return np.array([x[0]-w/2.,x[1]-h/2.,x[0]+w/2.,x[1]+h/2.,score]).reshape((1,5)) |
|
|
|
|
|
class KalmanBoxTracker(object): |
|
""" |
|
This class represents the internal state of individual tracked objects observed as bbox. |
|
""" |
|
count = 0 |
|
def __init__(self,bbox,hit_to_confirm=1): |
|
""" |
|
Initialises a tracker using initial bounding box. |
|
""" |
|
|
|
self.kf = KalmanFilter(dim_x=7, dim_z=4) |
|
self.kf.F = np.array([[1,0,0,0,1,0,0],[0,1,0,0,0,1,0],[0,0,1,0,0,0,1],[0,0,0,1,0,0,0], [0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]) |
|
self.kf.H = np.array([[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0]]) |
|
|
|
self.kf.R[2:,2:] *= 10. |
|
self.kf.P[4:,4:] *= 1000. |
|
self.kf.P *= 10. |
|
self.kf.Q[-1,-1] *= 0.01 |
|
self.kf.Q[4:,4:] *= 0.01 |
|
|
|
self.kf.x[:4] = convert_bbox_to_z(bbox) |
|
self.time_since_update = 0 |
|
self.id = KalmanBoxTracker.count |
|
KalmanBoxTracker.count += 1 |
|
self.history = [] |
|
self.hits = 0 |
|
self.hit_streak = 0 |
|
self.age = 0 |
|
self.confirmed = False |
|
self.hit_to_confirm = hit_to_confirm |
|
self.conf = bbox[-1] |
|
|
|
|
|
def update(self,bbox): |
|
""" |
|
Updates the state vector with observed bbox. |
|
""" |
|
self.time_since_update = 0 |
|
self.history = [] |
|
self.hits += 1 |
|
self.hit_streak += 1 |
|
self.conf = bbox[-1] |
|
self.kf.update(convert_bbox_to_z(bbox)) |
|
if not self.confirmed: |
|
if self.hits >= self.hit_to_confirm: |
|
self.confirmed = True |
|
|
|
|
|
def predict(self): |
|
""" |
|
Advances the state vector and returns the predicted bounding box estimate. |
|
""" |
|
if((self.kf.x[6]+self.kf.x[2])<=0): |
|
self.kf.x[6] *= 0.0 |
|
self.kf.predict() |
|
self.age += 1 |
|
if(self.time_since_update>0): |
|
self.hit_streak = 0 |
|
self.time_since_update += 1 |
|
self.history.append(convert_x_to_bbox(self.kf.x)) |
|
return self.history[-1] |
|
|
|
def get_state(self): |
|
""" |
|
Returns the current bounding box estimate. |
|
""" |
|
return convert_x_to_bbox(self.kf.x) |
|
|
|
|
|
def associate_detections_to_trackers(detections,trackers,iou_threshold = 0.3): |
|
""" |
|
Assigns detections to tracked object (both represented as bounding boxes) |
|
Returns 3 lists of matches, unmatched_detections and unmatched_trackers |
|
""" |
|
if(len(trackers)==0): |
|
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,5),dtype=int) |
|
|
|
iou_matrix = iou_batch(detections, trackers) |
|
|
|
if min(iou_matrix.shape) > 0: |
|
a = (iou_matrix > iou_threshold).astype(np.int32) |
|
if a.sum(1).max() == 1 and a.sum(0).max() == 1: |
|
matched_indices = np.stack(np.where(a), axis=1) |
|
else: |
|
matched_indices = linear_assignment(-iou_matrix) |
|
else: |
|
matched_indices = np.empty(shape=(0,2)) |
|
|
|
unmatched_detections = [] |
|
for d, det in enumerate(detections): |
|
if(d not in matched_indices[:,0]): |
|
unmatched_detections.append(d) |
|
unmatched_trackers = [] |
|
for t, trk in enumerate(trackers): |
|
if(t not in matched_indices[:,1]): |
|
unmatched_trackers.append(t) |
|
|
|
|
|
matches = [] |
|
for m in matched_indices: |
|
if(iou_matrix[m[0], m[1]]<iou_threshold): |
|
unmatched_detections.append(m[0]) |
|
unmatched_trackers.append(m[1]) |
|
else: |
|
matches.append(m.reshape(1,2)) |
|
if(len(matches)==0): |
|
matches = np.empty((0,2),dtype=int) |
|
else: |
|
matches = np.concatenate(matches,axis=0) |
|
|
|
return matches, np.array(unmatched_detections), np.array(unmatched_trackers) |
|
|
|
|
|
class Sort(object): |
|
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3): |
|
""" |
|
Sets key parameters for SORT |
|
""" |
|
self.max_age = max_age |
|
self.min_hits = min_hits |
|
self.iou_threshold = iou_threshold |
|
self.trackers = [] |
|
self.frame_count = 0 |
|
KalmanBoxTracker.count = 0 |
|
|
|
def update(self, dets=np.empty((0, 5))): |
|
""" |
|
Params: |
|
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...] |
|
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections). |
|
Returns the a similar array, where the last column is the object ID. |
|
NOTE: The number of objects returned may differ from the number of detections provided. |
|
""" |
|
self.frame_count += 1 |
|
|
|
trks = np.zeros((len(self.trackers), 5)) |
|
to_del = [] |
|
ret = [] |
|
for t, trk in enumerate(trks): |
|
pos = self.trackers[t].predict()[0] |
|
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0] |
|
if np.any(np.isnan(pos)): |
|
to_del.append(t) |
|
trks = np.ma.compress_rows(np.ma.masked_invalid(trks)) |
|
for t in reversed(to_del): |
|
self.trackers.pop(t) |
|
if (len(dets) != 0): |
|
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets,trks, self.iou_threshold) |
|
else: |
|
matched = np.array([]) |
|
unmatched_dets = np.array([]) |
|
unmatched_trks = trks |
|
|
|
|
|
|
|
for m in matched: |
|
self.trackers[m[1]].update(dets[m[0], :]) |
|
|
|
|
|
for i in unmatched_dets: |
|
trk = KalmanBoxTracker(dets[i,:], hit_to_confirm = self.min_hits) |
|
self.trackers.append(trk) |
|
|
|
|
|
ret1 = [] |
|
i = len(self.trackers) |
|
|
|
|
|
for trk in reversed(self.trackers): |
|
|
|
|
|
if trk.confirmed: |
|
miss_to_del = self.max_age |
|
else: |
|
miss_to_del = 1 |
|
if(trk.time_since_update > miss_to_del): |
|
self.trackers.pop(i-1) |
|
i -= 1 |
|
continue |
|
|
|
if trk.confirmed: |
|
d = trk.get_state()[0] |
|
tr = np.concatenate((d,[trk.id+1])).reshape(1,-1) |
|
ret1.append(tr) |
|
i -= 1 |
|
|
|
|
|
track_confidences = [x.conf for x in self.trackers if x.confirmed] |
|
if(len(ret1)>0): |
|
return np.concatenate(ret1), track_confidences[::-1] |
|
return np.empty((0,5)), np.empty((0,1)) |
|
|