File size: 1,993 Bytes
64f162f b385c66 64f162f 9738bb2 b385c66 64f162f b385c66 9738bb2 b385c66 9738bb2 64f162f b385c66 64f162f b385c66 64f162f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: mit
base_model: EleutherAI/gpt-neo-125M
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: MD5_gpt_neo_v1.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MD5_gpt_neo_v1.1
This model is a fine-tuned version of [EleutherAI/gpt-neo-125M](https://huggingface.co/EleutherAI/gpt-neo-125M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3814
- Rouge1: 0.0840
- Rouge2: 0.0
- Rougel: 0.0695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
| No log | 0.9091 | 5 | 7.9635 | 0.0283 | 0.0 | 0.0231 |
| No log | 2.0 | 11 | 5.3680 | 0.0328 | 0.0 | 0.0258 |
| No log | 2.9091 | 16 | 4.0323 | 0.0856 | 0.0 | 0.0776 |
| No log | 4.0 | 22 | 3.4255 | 0.0840 | 0.0 | 0.0696 |
| No log | 4.5455 | 25 | 3.3814 | 0.0840 | 0.0 | 0.0695 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1
|