File size: 1,546 Bytes
82f0bfd b531996 82f0bfd 6bb387e 82f0bfd 6bb387e 82f0bfd 6bb387e 82f0bfd 6bb387e 82f0bfd 9b54c1b 82f0bfd 9b54c1b b531996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
license: apache-2.0
library_name: transformers
---
# Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language models
> [Tian Yu](https://tianyu0313.github.io/), [Shaolei Zhang](https://zhangshaolei1998.github.io/), and [Yang Feng](https://people.ucas.edu.cn/~yangfeng?language=en)*
## Model Details
<!-- Provide a longer summary of what this model is. -->
- **Discription:** This is Auto-RAG model trained with synthesized iterative retrieval instruction data. Details can be found in our paper.
- **Developed by:** ICTNLP Group. Authors: Tian Yu, Shaolei Zhang and Yang Feng.
- **Github Repository:** https://github.com/ictnlp/Auto-RAG
- **Paper Link:** https://arxiv.org/abs/2411.19443
- **Finetuned from model:** Meta-Llama3-8B-Instruct
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
You can directly deploy the model using vllm, such as:
```
CUDA_VISIBLE_DEVICES=6,7 python -m vllm.entrypoints.openai.api_server \
--model PATH_TO_MODEL\
--gpu-memory-utilization 0.9 \
-tp 2 \
--max-model-len 8192\
--port 8000\
--host 0.0.0.0
```
## Citation
```
@article{yu2024autorag,
title={Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models},
author={Tian Yu and Shaolei Zhang and Yang Feng},
year={2024},
eprint={2411.19443},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.19443},
}
``` |