File size: 874 Bytes
5dc9adf
 
 
 
 
 
 
 
51ed51a
 
 
983e336
 
 
 
 
 
 
 
 
51ed51a
 
2c5f930
52010bd
2c5f930
52010bd
 
 
 
 
 
 
2c5f930
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
---
language:
- en
metrics:
- accuracy
pipeline_tag: text-classification
---

# PropagandaDetection

The model is a Transformer network based on a DistilBERT pre-trained model. 
The pre-trained model is fine-tuned on the SemEval 2023 Task 3 training dataset for the propaganda detection task. 

### Hyperparameters : 
Batch size = 16; 
Learning rate = 2e-5;
AdamW optimizer;
Epochs = 4. 

Accuracy = 90 % on SemEval 2023 test set.


## References

```
@inproceedings{bangerter2023unisa,
  title={Unisa at SemEval-2023 task 3: a shap-based method for propaganda detection},
  author={Bangerter, Micaela and Fenza, Giuseppe and Gallo, Mariacristina and Loia, Vincenzo and Volpe, Alberto and De Maio, Carmen and Stanzione, Claudio},
  booktitle={Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023)},
  pages={885--891},
  year={2023}
}
```