--- language: - en metrics: - accuracy pipeline_tag: text-classification --- # PropagandaDetection The model is a Transformer network based on a DistilBERT pre-trained model. The pre-trained model is fine-tuned on the SemEval 2023 Task 3 training dataset for the propaganda detection task. ### Hyperparameters : Batch size = 16; Learning rate = 2e-5; AdamW optimizer; Epochs = 4. Accuracy = 90 % on SemEval 2023 test set. ## References ``` @inproceedings{bangerter2023unisa, title={Unisa at SemEval-2023 task 3: a shap-based method for propaganda detection}, author={Bangerter, Micaela and Fenza, Giuseppe and Gallo, Mariacristina and Loia, Vincenzo and Volpe, Alberto and De Maio, Carmen and Stanzione, Claudio}, booktitle={Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023)}, pages={885--891}, year={2023} } ```