gxy commited on
Commit
0126c09
2 Parent(s): b042d63 1ce8b07

Merge branch 'main' of https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese into main

Browse files
Files changed (1) hide show
  1. README.md +55 -20
README.md CHANGED
@@ -13,16 +13,47 @@ inference: true
13
  widget:
14
  - text: "桂林是世界闻名的旅游城市,它有[MASK]江。"
15
  ---
16
- # Erlangshen-DeBERTa-v2-320M-Chinese,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
17
 
18
- The 320 million parameter deberta-V2 base model, using 180G Chinese data, 8 A100(80G) training for 7 days,which is a encoder-only transformer structure. Consumed totally 250M samples.
19
- **our model is still training. And we will update our model once a week!**
20
 
21
- ## Task Description
 
22
 
23
- Erlangshen-Deberta-97M-Chinese is pre-trained by bert like mask task from Deberta [paper](https://readpaper.com/paper/3033187248)
24
 
25
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ```python
28
  from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
@@ -35,27 +66,31 @@ fillmask_pipe = FillMaskPipeline(model, tokenizer, device=0)
35
  print(fillmask_pipe(text, top_k=10))
36
  ```
37
 
38
- ## Finetune
39
 
40
- We present the dev results on some tasks(dev set).
41
 
42
- | Model | AFQMC | TNEWS1.1 | IFLYTEK | OCNLI | CMNLI |
43
- | -------------------------------------------------------------------------------------------------------------------------------- | ------ | -------- | ------- | ------ | ------ |
44
- | RoBERTa-base | 0.7406 | 0.575 | 0.6036 | 0.743 | 0.7973 |
45
- | RoBERTa-large | 0.7488 | 0.5879 | 0.6152 | 0.777 | 0.814 |
46
- | [IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece) | 0.7405 | 0.571 | 0.5977 | 0.7568 | 0.807 |
47
- | **[IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese)** | 0.7498 | 0.5817 | 0.6042 | 0.8022 | 0.8301 |
48
- | [IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese) | 0.7549 | 0.5873 | 0.6177 | 0.8012 | 0.8389 |
49
 
50
- ## Citation
 
 
 
 
 
 
 
 
51
 
52
- If you find the resource is useful, please cite the following website in your paper.
53
 
54
- ```
 
 
55
  @misc{Fengshenbang-LM,
56
  title={Fengshenbang-LM},
57
  author={IDEA-CCNL},
58
- year={2022},
59
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
60
  }
61
- ```
 
13
  widget:
14
  - text: "桂林是世界闻名的旅游城市,它有[MASK]江。"
15
  ---
 
16
 
17
+ # Erlangshen-DeBERTa-v2-320M-Chinese
 
18
 
19
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
20
+ - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
21
 
22
+ ## 简介 Brief Introduction
23
 
24
+ 善于处理NLU任务,采用全词掩码的,中文版的3.2亿参数DeBERTa-v2-Large。
25
+
26
+ Good at solving NLU tasks, adopting Whole Word Masking, Chinese DeBERTa-v2-Large with 320M parameters.
27
+
28
+ ## 模型分类 Model Taxonomy
29
+
30
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
31
+ | :----: | :----: | :----: | :----: | :----: | :----: |
32
+ | 通用 General | 自然语言理解 NLU | 二郎神 Erlangshen | DeBERTa-v2 | 320M | 中文 Chinese |
33
+
34
+ ## 模型信息 Model Information
35
+
36
+ 参考论文:[DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://readpaper.com/paper/3033187248)
37
+
38
+ 为了得到一个中文版的DeBERTa-v2-large(320M),我们用悟道语料库(180G版本)进行预训练。我们在MLM中使用了全词掩码(wwm)的方式。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了8张A100(80G)约7天。
39
+
40
+ To get a Chinese DeBERTa-v2-large (320M), we use WuDao Corpora (180 GB version) for pre-training. We employ the Whole Word Masking (wwm) in MLM. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 8 A100(80G) GPUs.
41
+
42
+ ### 下游任务 Performance
43
+
44
+ 我们展示了下列下游任务的结果(dev集):
45
+
46
+ We present the results (dev set) on the following tasks:
47
+
48
+ | Model | AFQMC | TNEWS1.1 | IFLYTEK | OCNLI | CMNLI |
49
+ | -------------------------------------------------------------------------------------------------------------------------------- | ------ | -------- | ------- | ------ | ------ |
50
+ | RoBERTa-base | 0.7406 | 0.575 | 0.6036 | 0.743 | 0.7973 |
51
+ | RoBERTa-large | 0.7488 | 0.5879 | 0.6152 | 0.777 | 0.814 |
52
+ | [IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece) | 0.7405 | 0.571 | 0.5977 | 0.7568 | 0.807 |
53
+ | **[IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese)** | 0.7498 | 0.5817 | 0.6042 | 0.8022 | 0.8301 |
54
+ | [IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese) | 0.7549 | 0.5873 | 0.6177 | 0.8012 | 0.8389 |
55
+
56
+ ## 使用 Usage
57
 
58
  ```python
59
  from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
 
66
  print(fillmask_pipe(text, top_k=10))
67
  ```
68
 
69
+ ## 引用 Citation
70
 
71
+ 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970)
72
 
73
+ If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
 
 
 
 
 
 
74
 
75
+ ```text
76
+ @article{fengshenbang,
77
+ author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
78
+ title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
79
+ journal = {CoRR},
80
+ volume = {abs/2209.02970},
81
+ year = {2022}
82
+ }
83
+ ```
84
 
85
+ 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
86
 
87
+ You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
88
+
89
+ ```text
90
  @misc{Fengshenbang-LM,
91
  title={Fengshenbang-LM},
92
  author={IDEA-CCNL},
93
+ year={2021},
94
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
95
  }
96
+ ```