--- language: - zh license: apache-2.0 tags: - bert - deberta inference: true widget: - text: "桂林是世界闻名的旅游城市,它有[MASK]江。" --- # Erlangshen-DeBERTa-v2-320M-Chinese,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) The 320 million parameter deberta-V2 base model, using 180G Chinese data, 8 A100(80G) training for 7 days,which is a encoder-only transformer structure. Consumed totally 250M samples. **our model is still training. And we will update our model once a week!** ## Task Description Erlangshen-Deberta-97M-Chinese is pre-trained by bert like mask task from Deberta [paper](https://readpaper.com/paper/3033187248) ## Usage ```python from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline import torch tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese', use_fast=False) model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese') text = '桂林是世界闻名的旅游城市,它有[MASK]江。' fillmask_pipe = FillMaskPipeline(model, tokenizer, device=0) print(fillmask_pipe(text, top_k=10)) ``` ## Finetune We present the dev results on some tasks(dev set). | Model | AFQMC | TNEWS1.1 | IFLYTEK | OCNLI | CMNLI | | -------------------------------------------------------------------------------------------------------------------------------- | ------ | -------- | ------- | ------ | ------ | | RoBERTa-base | 0.7406 | 0.575 | 0.6036 | 0.743 | 0.7973 | | RoBERTa-large | 0.7488 | 0.5879 | 0.6152 | 0.777 | 0.814 | | [IDEA-CCNL/Erlangshen-DeBERTa-v2-97M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece) | 0.7405 | 0.571 | 0.5977 | 0.7568 | 0.807 | | **[IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese)** | 0.7498 | 0.5817 | 0.6042 | 0.8022 | 0.8301 | | [IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese](https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-710M-Chinese) | 0.7549 | 0.5873 | 0.6177 | 0.8012 | 0.8389 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2022}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```