wanng commited on
Commit
03d305d
1 Parent(s): 0d27798

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -20,9 +20,9 @@ widget:
20
 
21
  ## 简介 Brief Introduction
22
 
23
- 善于处理NLU任务,采用全词掩码的,中文版的0.97亿参数DeBERTa-v2。
24
 
25
- Good at solving NLU tasks, adopting Whole Word Masking, Chinese DeBERTa-v2 with 97M parameters.
26
 
27
  ## 模型分类 Model Taxonomy
28
 
@@ -35,9 +35,9 @@ Good at solving NLU tasks, adopting Whole Word Masking, Chinese DeBERTa-v2 with
35
 
36
  参考论文:[DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://readpaper.com/paper/3033187248)
37
 
38
- 为了得到一个中文版的DeBERTa-v2(97M),我们用悟道语料库(180G版本)进行预训练。我们在MLM中使用了全词掩码(wwm)的方式。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了24张A100约7天。
39
 
40
- To get a Chinese DeBERTa-v2 (97M), we use WuDao Corpora (180 GB version) for pre-training. We employ the Whole Word Masking (wwm) in MLM. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 24 A100 GPUs.
41
 
42
  ### 下游任务 Performance
43
 
 
20
 
21
  ## 简介 Brief Introduction
22
 
23
+ 善于处理NLU任务,采用全词掩码的,中文版的0.97亿参数DeBERTa-v2-Base
24
 
25
+ Good at solving NLU tasks, adopting Whole Word Masking, Chinese DeBERTa-v2-Base with 97M parameters.
26
 
27
  ## 模型分类 Model Taxonomy
28
 
 
35
 
36
  参考论文:[DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://readpaper.com/paper/3033187248)
37
 
38
+ 为了得到一个中文版的DeBERTa-v2-Base(97M),我们用悟道语料库(180G版本)进行预训练。我们在MLM中使用了全词掩码(wwm)的方式。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了24张A100约7天。
39
 
40
+ To get a Chinese DeBERTa-v2-Base (97M), we use WuDao Corpora (180 GB version) for pre-training. We employ the Whole Word Masking (wwm) in MLM. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 24 A100 GPUs.
41
 
42
  ### 下游任务 Performance
43