wanng commited on
Commit
3648b14
1 Parent(s): 8636a75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -5,7 +5,7 @@ language:
5
  license: apache-2.0
6
 
7
  tags:
8
- - bert
9
 
10
  inference: true
11
 
@@ -13,7 +13,7 @@ widget:
13
  - text: "生活的真谛是[MASK]。"
14
  ---
15
 
16
- # Erlangshen-Deberta-97M-Chinese
17
 
18
  - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
19
  - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
@@ -35,9 +35,9 @@ Good at solving NLU tasks, adopting Whole Word Masking, Chinese DeBERTa-v2 with
35
 
36
  参考论文:[Deberta](https://readpaper.com/paper/3033187248)
37
 
38
- 为了得到一个中文版的DeBERTa-v2(97M),我们用悟道语料库(180G版本)进行预训练。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了24张A100约7天。
39
 
40
- To get a Chinese DeBERTa-v2 (97M), we use WuDao Corpora (180 GB version) for pre-training. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 24 A100 GPUs.
41
 
42
  ### 下游任务 Performance
43
 
 
5
  license: apache-2.0
6
 
7
  tags:
8
+ - DeBERTa
9
 
10
  inference: true
11
 
 
13
  - text: "生活的真谛是[MASK]。"
14
  ---
15
 
16
+ # Erlangshen-DeBERTa-v2-97M-Chinese
17
 
18
  - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
19
  - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
 
35
 
36
  参考论文:[Deberta](https://readpaper.com/paper/3033187248)
37
 
38
+ 为了得到一个中文版的DeBERTa-v2(97M),我们用悟道语料库(180G版本)进行预训练。我们在MLM中使用了全词掩码(wwm)的方式。具体地,我们在预训练阶段中使用了[封神框架](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen)大概花费了24张A100约7天。
39
 
40
+ To get a Chinese DeBERTa-v2 (97M), we use WuDao Corpora (180 GB version) for pre-training. We employ the Whole Word Masking (wwm) in MLM. Specifically, we use the [fengshen framework](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/main/fengshen) in the pre-training phase which cost about 7 days with 24 A100 GPUs.
41
 
42
  ### 下游任务 Performance
43