from transformers import LlamaForCausalLM, LlamaTokenizer, BlipImageProcessor | |
from modeling_ziya_blip2 import ZiyaBLIP2ForConditionalGeneration | |
from PIL import Image | |
# 请注意目前https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1是delta权重(即差值权重) | |
# LM_MODEL_PATH需要的是完整权重 | |
# 因此请先根据Ziya-LLaMA-13B-v1的README.md中的说明进行转换,获取完整的Ziya-LLaMA-13B-v1权重 | |
# 我这里是本地已经转换好的Ziya-LLaMA-13B-v1完整权重,所以直接使用 | |
LM_MODEL_PATH="/cognitive_comp/wuxiaojun/pretrained/pytorch/huggingface/Ziya-LLaMA-13B-v1" | |
lm_model = LlamaForCausalLM.from_pretrained(LM_MODEL_PATH) | |
tokenizer = LlamaTokenizer.from_pretrained(LM_MODEL_PATH) | |
# visual model | |
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073] | |
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711] | |
# demo.py is in the project path, so we can use local path ".". Otherwise you should use "IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1" | |
model = ZiyaBLIP2ForConditionalGeneration.from_pretrained(".", language_model=lm_model) | |
image_size = model.config.vision_config.image_size | |
image_processor = BlipImageProcessor( | |
size={"height": image_size, "width": image_size}, | |
image_mean=OPENAI_CLIP_MEAN, | |
image_std=OPENAI_CLIP_STD, | |
) | |
model.cuda() # if you use on cpu, comment this line | |
generate_config = { | |
"max_new_tokens": 128, | |
"top_p": 0.1, | |
"temperature": 0.7 | |
} | |
output = model.chat( | |
tokenizer=tokenizer, | |
pixel_values=image_processor(Image.open("wzry.jpg"), return_tensors="pt").pixel_values.to(model.device), | |
query="这是什么游戏", | |
previous_querys=[], | |
previous_outputs=[], | |
**generate_config, | |
) | |
print(output) | |
# 这是一款名为《王者荣耀》的多人在线竞技游戏。在游戏中,玩家扮演不同的角色,并与其他玩家进行战斗。游戏中的人物和环境都是虚拟的,但它们看起来非常逼真。玩家需要使用各种技能和策略来击败对手,并获得胜利。 |