liangyuxin
commited on
Commit
·
be55357
1
Parent(s):
026a0d8
add config and model.py
Browse files- config.json +26 -0
- modeling_llama_rm.py +26 -0
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "IDEA-CCNL/Ziya-LLaMA-7B-Reward",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaRewardModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoModelForSequenceClassification": "rm_modeling_hf.LlamaRewardModel"
|
8 |
+
},
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "silu",
|
12 |
+
"hidden_size": 4096,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 11008,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "llama",
|
17 |
+
"num_attention_heads": 32,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.28.0.dev0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32001
|
26 |
+
}
|
modeling_llama_rm.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel,LlamaConfig,LlamaModel
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
class LlamaRewardModel(PreTrainedModel):
|
7 |
+
config_class =LlamaConfig
|
8 |
+
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
self.model = LlamaModel(config)
|
12 |
+
self.value_head = nn.Linear(config.hidden_size, 1)
|
13 |
+
|
14 |
+
def forward(self,
|
15 |
+
input_ids: torch.LongTensor,
|
16 |
+
attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
17 |
+
outputs = self.model(input_ids,attention_mask=attention_mask, output_hidden_states=True)
|
18 |
+
last_hidden_states = outputs.hidden_states[-1]
|
19 |
+
if attention_mask is None:
|
20 |
+
last_hidden_states = last_hidden_states[:, -1]
|
21 |
+
else:
|
22 |
+
last_index = attention_mask.cumsum(dim=1).argmax(dim=1)
|
23 |
+
last_hidden_states = last_hidden_states.gather(1, last_index.view(-1, 1, 1).expand(-1, 1, last_hidden_states.size(-1))).squeeze(1)
|
24 |
+
values = self.value_head(last_hidden_states).squeeze(-1)# (bs,)
|
25 |
+
|
26 |
+
return values
|