File size: 4,502 Bytes
692ce93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel


class CLIPVisionTower(nn.Module):
    def __init__(self, vision_tower, args, freeze_vision_tower=False, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
        self.freeze_vision_tower = freeze_vision_tower
        if not delay_load:
            self.load_model()
        elif getattr(args, "unfreeze_mm_vision_tower", False):
            self.load_model()
        else:
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)

    def load_model(self, device_map=None):
        if self.is_loaded:
            print(
                "{} is already loaded, `load_model` called again, skipping.".format(
                    self.vision_tower_name
                )
            )
            return

        self.image_processor = CLIPImageProcessor.from_pretrained(
            self.vision_tower_name
        )
        self.vision_tower = CLIPVisionModel.from_pretrained(
            self.vision_tower_name, device_map=device_map
        )

        if self.freeze_vision_tower:
            self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == "patch":
            image_features = image_features[:, 1:]
        elif self.select_feature == "cls_patch":
            image_features = image_features
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")
        return image_features

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                if self.freeze_vision_tower:
                    with torch.no_grad():
                        image_forward_out = self.vision_tower(
                            image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                            output_hidden_states=True,
                        )
                        image_feature = self.feature_select(image_forward_out).to(
                            image.dtype
                        )
                        image_features.append(image_feature)
                else:
                    image_forward_out = self.vision_tower(
                        image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                        output_hidden_states=True,
                    )
                    image_feature = self.feature_select(image_forward_out).to(
                        image.dtype
                    )
                    image_features.append(image_feature)
        else:
            if self.freeze_vision_tower:
                with torch.no_grad():
                    image_forward_out = self.vision_tower(
                        images.to(device=self.device, dtype=self.dtype),
                        output_hidden_states=True,
                    )
                    image_features = self.feature_select(image_forward_out).to(
                        images.dtype
                    )
            else:
                image_forward_outs = self.vision_tower(
                    images.to(device=self.device, dtype=self.dtype),
                    output_hidden_states=True,
                )
                image_features = self.feature_select(image_forward_outs).to(
                    images.dtype
                )

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches_per_side(self):
        return self.config.image_size // self.config.patch_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2