RexSeek-3B / convnext.py
Mountchicken's picture
Upload 16 files
692ce93 verified
raw
history blame
24.5 kB
from functools import partial
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from open_clip.factory import get_model_config
from open_clip.model import CLIPVisionCfg
from timm.layers import (
AvgPool2dSame,
ClassifierHead,
DropPath,
GlobalResponseNormMlp,
LayerNorm,
LayerNorm2d,
Mlp,
NormMlpClassifierHead,
create_conv2d,
get_act_layer,
make_divisible,
to_ntuple,
trunc_normal_,
)
from timm.models._builder import build_model_with_cfg
from timm.models._features import feature_take_indices
from timm.models._manipulate import checkpoint_seq, named_apply
__all__ = ["ConvNeXt"] # model_registry will add each entrypoint fn to this
class Downsample(nn.Module):
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
super().__init__()
avg_stride = stride if dilation == 1 else 1
if stride > 1 or dilation > 1:
avg_pool_fn = (
AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
)
self.pool = avg_pool_fn(
2, avg_stride, ceil_mode=True, count_include_pad=False
)
else:
self.pool = nn.Identity()
if in_chs != out_chs:
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
else:
self.conv = nn.Identity()
def forward(self, x):
x = self.pool(x)
x = self.conv(x)
return x
class ConvNeXtBlock(nn.Module):
"""ConvNeXt Block
There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
"""
def __init__(
self,
in_chs: int,
out_chs: Optional[int] = None,
kernel_size: int = 7,
stride: int = 1,
dilation: Union[int, Tuple[int, int]] = (1, 1),
mlp_ratio: float = 4,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
ls_init_value: Optional[float] = 1e-6,
act_layer: Union[str, Callable] = "gelu",
norm_layer: Optional[Callable] = None,
drop_path: float = 0.0,
):
"""
Args:
in_chs: Block input channels.
out_chs: Block output channels (same as in_chs if None).
kernel_size: Depthwise convolution kernel size.
stride: Stride of depthwise convolution.
dilation: Tuple specifying input and output dilation of block.
mlp_ratio: MLP expansion ratio.
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
conv_bias: Apply bias for all convolution (linear) layers.
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
ls_init_value: Layer-scale init values, layer-scale applied if not None.
act_layer: Activation layer.
norm_layer: Normalization layer (defaults to LN if not specified).
drop_path: Stochastic depth probability.
"""
super().__init__()
out_chs = out_chs or in_chs
dilation = to_ntuple(2)(dilation)
act_layer = get_act_layer(act_layer)
if not norm_layer:
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
mlp_layer = partial(
GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp
)
self.use_conv_mlp = conv_mlp
self.conv_dw = create_conv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=dilation[0],
depthwise=True,
bias=conv_bias,
)
self.norm = norm_layer(out_chs)
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
self.ramma = (
nn.Parameter(ls_init_value * torch.ones(out_chs))
if ls_init_value is not None
else None
)
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
self.shortcut = Downsample(
in_chs, out_chs, stride=stride, dilation=dilation[0]
)
else:
self.shortcut = nn.Identity()
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
shortcut = x
x = self.conv_dw(x)
if self.use_conv_mlp:
x = self.norm(x)
x = self.mlp(x)
else:
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.mlp(x)
x = x.permute(0, 3, 1, 2)
if self.ramma is not None:
x = x.mul(self.ramma.reshape(1, -1, 1, 1))
x = self.drop_path(x) + self.shortcut(shortcut)
return x
class ConvNeXtStage(nn.Module):
def __init__(
self,
in_chs,
out_chs,
kernel_size=7,
stride=2,
depth=2,
dilation=(1, 1),
drop_path_rates=None,
ls_init_value=1.0,
conv_mlp=False,
conv_bias=True,
use_grn=False,
act_layer="gelu",
norm_layer=None,
norm_layer_cl=None,
):
super().__init__()
self.grad_checkpointing = False
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
pad = (
"same" if dilation[1] > 1 else 0
) # same padding needed if dilation used
self.downsample = nn.Sequential(
norm_layer(in_chs),
create_conv2d(
in_chs,
out_chs,
kernel_size=ds_ks,
stride=stride,
dilation=dilation[0],
padding=pad,
bias=conv_bias,
),
)
in_chs = out_chs
else:
self.downsample = nn.Identity()
drop_path_rates = drop_path_rates or [0.0] * depth
stage_blocks = []
for i in range(depth):
stage_blocks.append(
ConvNeXtBlock(
in_chs=in_chs,
out_chs=out_chs,
kernel_size=kernel_size,
dilation=dilation[1],
drop_path=drop_path_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
)
)
in_chs = out_chs
self.blocks = nn.Sequential(*stage_blocks)
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class ConvNeXt(nn.Module):
r"""ConvNeXt
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf
"""
def __init__(
self,
in_chans: int = 3,
num_classes: int = 1000,
global_pool: str = "avg",
output_stride: int = 32,
depths: Tuple[int, ...] = (3, 3, 9, 3),
dims: Tuple[int, ...] = (96, 192, 384, 768),
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
ls_init_value: Optional[float] = 1e-6,
stem_type: str = "patch",
patch_size: int = 4,
head_init_scale: float = 1.0,
head_norm_first: bool = False,
head_hidden_size: Optional[int] = None,
conv_mlp: bool = False,
conv_bias: bool = True,
use_grn: bool = False,
act_layer: Union[str, Callable] = "gelu",
norm_layer: Optional[Union[str, Callable]] = None,
norm_eps: Optional[float] = None,
drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
):
"""
Args:
in_chans: Number of input image channels.
num_classes: Number of classes for classification head.
global_pool: Global pooling type.
output_stride: Output stride of network, one of (8, 16, 32).
depths: Number of blocks at each stage.
dims: Feature dimension at each stage.
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
ls_init_value: Init value for Layer Scale, disabled if None.
stem_type: Type of stem.
patch_size: Stem patch size for patch stem.
head_init_scale: Init scaling value for classifier weights and biases.
head_norm_first: Apply normalization before global pool + head.
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
conv_bias: Use bias layers w/ all convolutions.
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
act_layer: Activation layer type.
norm_layer: Normalization layer type.
drop_rate: Head pre-classifier dropout rate.
drop_path_rate: Stochastic depth drop rate.
"""
super().__init__()
assert output_stride in (8, 16, 32)
kernel_sizes = to_ntuple(4)(kernel_sizes)
if norm_layer is None:
norm_layer = LayerNorm2d
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
if norm_eps is not None:
norm_layer = partial(norm_layer, eps=norm_eps)
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
else:
assert (
conv_mlp
), "If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input"
norm_layer_cl = norm_layer
if norm_eps is not None:
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.feature_info = []
assert stem_type in ("patch", "overlap", "overlap_tiered")
if stem_type == "patch":
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
self.stem = nn.Sequential(
nn.Conv2d(
in_chans,
dims[0],
kernel_size=patch_size,
stride=patch_size,
bias=conv_bias,
),
norm_layer(dims[0]),
)
stem_stride = patch_size
else:
mid_chs = make_divisible(dims[0] // 2) if "tiered" in stem_type else dims[0]
self.stem = nn.Sequential(
nn.Conv2d(
in_chans,
mid_chs,
kernel_size=3,
stride=2,
padding=1,
bias=conv_bias,
),
nn.Conv2d(
mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias
),
norm_layer(dims[0]),
)
stem_stride = 4
self.stages = nn.Sequential()
dp_rates = [
x.tolist()
for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)
]
stages = []
prev_chs = dims[0]
curr_stride = stem_stride
dilation = 1
# 4 feature resolution stages, each consisting of multiple residual blocks
for i in range(4):
stride = 2 if curr_stride == 2 or i > 0 else 1
if curr_stride >= output_stride and stride > 1:
dilation *= stride
stride = 1
curr_stride *= stride
first_dilation = 1 if dilation in (1, 2) else 2
out_chs = dims[i]
stages.append(
ConvNeXtStage(
prev_chs,
out_chs,
kernel_size=kernel_sizes[i],
stride=stride,
dilation=(first_dilation, dilation),
depth=depths[i],
drop_path_rates=dp_rates[i],
ls_init_value=ls_init_value,
conv_mlp=conv_mlp,
conv_bias=conv_bias,
use_grn=use_grn,
act_layer=act_layer,
norm_layer=norm_layer,
norm_layer_cl=norm_layer_cl,
)
)
prev_chs = out_chs
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
self.feature_info += [
dict(num_chs=prev_chs, reduction=curr_stride, module=f"stages.{i}")
]
self.stages = nn.Sequential(*stages)
self.num_features = self.head_hidden_size = prev_chs
# if head_norm_first == true, norm -> global pool -> fc ordering, like most other nets
# otherwise pool -> norm -> fc, the default ConvNeXt ordering (pretrained FB weights)
if head_norm_first:
assert not head_hidden_size
self.norm_pre = norm_layer(self.num_features)
self.head = ClassifierHead(
self.num_features,
num_classes,
pool_type=global_pool,
drop_rate=self.drop_rate,
)
else:
self.norm_pre = nn.Identity()
self.head = NormMlpClassifierHead(
self.num_features,
num_classes,
hidden_size=head_hidden_size,
pool_type=global_pool,
drop_rate=self.drop_rate,
norm_layer=norm_layer,
act_layer="gelu",
)
self.head_hidden_size = self.head.num_features
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self)
@torch.jit.ignore
def group_matcher(self, coarse=False):
return dict(
stem=r"^stem",
blocks=(
r"^stages\.(\d+)"
if coarse
else [
(r"^stages\.(\d+)\.downsample", (0,)), # blocks
(r"^stages\.(\d+)\.blocks\.(\d+)", None),
(r"^norm_pre", (99999,)),
]
),
)
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def get_classifier(self) -> nn.Module:
return self.head.fc
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None):
self.num_classes = num_classes
self.head.reset(num_classes, global_pool)
def forward_intermediates(
self,
x: torch.Tensor,
indices: Optional[Union[int, List[int], Tuple[int]]] = None,
norm: bool = False,
stop_early: bool = False,
output_fmt: str = "NCHW",
intermediates_only: bool = False,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
"""Forward features that returns intermediates.
Args:
x: Input image tensor
indices: Take last n blocks if int, all if None, select matching indices if sequence
norm: Apply norm layer to compatible intermediates
stop_early: Stop iterating over blocks when last desired intermediate hit
output_fmt: Shape of intermediate feature outputs
intermediates_only: Only return intermediate features
Returns:
"""
assert output_fmt in ("NCHW",), "Output shape must be NCHW."
intermediates = []
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
# forward pass
feat_idx = 0 # stem is index 0
x = self.stem(x)
if feat_idx in take_indices:
intermediates.append(x)
if (
torch.jit.is_scripting() or not stop_early
): # can't slice blocks in torchscript
stages = self.stages
else:
stages = self.stages[:max_index]
for stage in stages:
feat_idx += 1
x = stage(x)
if feat_idx in take_indices:
# NOTE not bothering to apply norm_pre when norm=True as almost no models have it enabled
intermediates.append(x)
if intermediates_only:
return intermediates
x = self.norm_pre(x)
return x, intermediates
def prune_intermediate_layers(
self,
indices: Union[int, List[int], Tuple[int]] = 1,
prune_norm: bool = False,
prune_head: bool = True,
):
"""Prune layers not required for specified intermediates."""
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices)
self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0
if prune_norm:
self.norm_pre = nn.Identity()
if prune_head:
self.reset_classifier(0, "")
return take_indices
def forward_features(self, x):
x = self.stem(x)
x = self.stages(x)
x = self.norm_pre(x)
return x
def forward_head(self, x, pre_logits: bool = False):
return self.head(x, pre_logits=True) if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x)
x = self.forward_head(x)
return x
def _init_weights(module, name=None, head_init_scale=1.0):
if isinstance(module, nn.Conv2d):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
nn.init.zeros_(module.bias)
if name and "head." in name:
module.weight.data.mul_(head_init_scale)
module.bias.data.mul_(head_init_scale)
def checkpoint_filter_fn(state_dict, model):
"""Remap FB checkpoints -> timm"""
if "head.norm.weight" in state_dict or "norm_pre.weight" in state_dict:
return state_dict # non-FB checkpoint
if "model" in state_dict:
state_dict = state_dict["model"]
out_dict = {}
if "visual.trunk.stem.0.weight" in state_dict:
out_dict = {
k.replace("visual.trunk.", ""): v
for k, v in state_dict.items()
if k.startswith("visual.trunk.")
}
if "visual.head.proj.weight" in state_dict:
out_dict["head.fc.weight"] = state_dict["visual.head.proj.weight"]
out_dict["head.fc.bias"] = torch.zeros(
state_dict["visual.head.proj.weight"].shape[0]
)
elif "visual.head.mlp.fc1.weight" in state_dict:
out_dict["head.pre_logits.fc.weight"] = state_dict[
"visual.head.mlp.fc1.weight"
]
out_dict["head.pre_logits.fc.bias"] = state_dict["visual.head.mlp.fc1.bias"]
out_dict["head.fc.weight"] = state_dict["visual.head.mlp.fc2.weight"]
out_dict["head.fc.bias"] = torch.zeros(
state_dict["visual.head.mlp.fc2.weight"].shape[0]
)
return out_dict
import re
for k, v in state_dict.items():
k = k.replace("downsample_layers.0.", "stem.")
k = re.sub(r"stages.([0-9]+).([0-9]+)", r"stages.\1.blocks.\2", k)
k = re.sub(
r"downsample_layers.([0-9]+).([0-9]+)", r"stages.\1.downsample.\2", k
)
k = k.replace("dwconv", "conv_dw")
k = k.replace("pwconv", "mlp.fc")
if "grn" in k:
k = k.replace("grn.beta", "mlp.grn.bias")
k = k.replace("grn.ramma", "mlp.grn.weight")
v = v.reshape(v.shape[-1])
k = k.replace("head.", "head.fc.")
if k.startswith("norm."):
k = k.replace("norm", "head.norm")
if v.ndim == 2 and "head" not in k:
model_shape = model.state_dict()[k].shape
v = v.reshape(model_shape)
out_dict[k] = v
return out_dict
def _create_convnext(variant, pretrained=False, **kwargs):
if kwargs.get("pretrained_cfg", "") == "fcmae":
# NOTE fcmae pretrained weights have no classifier or final norm-layer (`head.norm`)
# This is workaround loading with num_classes=0 w/o removing norm-layer.
kwargs.setdefault("pretrained_strict", False)
model = build_model_with_cfg(
ConvNeXt,
variant,
pretrained,
pretrained_filter_fn=checkpoint_filter_fn,
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True),
**kwargs,
)
return model
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt:
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
model = _create_convnext(
"convnext_large", pretrained=pretrained, **dict(model_args, **kwargs)
)
return model
class CLIP(nn.Module):
output_dict: torch.jit.Final[bool]
def __init__(
self,
embed_dim: int,
vision_cfg: CLIPVisionCfg,
quick_gelu: bool = False,
cast_dtype: Optional[torch.dtype] = None,
output_dict: bool = False,
**kwargs,
):
super().__init__()
self.output_dict = output_dict
self.visual = convnext_large()
class ConvNextVisionEncoder(nn.Module):
def __init__(
self,
):
super().__init__()
self.model_type = "convnext_large_d_320"
self.model_channel = [192, 384, 768, 1536] # stage 0-3
clip_model = CLIP(**get_model_config(self.model_type), use_text=False)
# decompose stem and stages blocks in vision tower
self.vision_stem = clip_model.visual.stem
self.vision_stages = clip_model.visual.stages
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_feature = self.backbone(
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
)
image_features.append(image_feature)
else:
image_features = self.backbone(
images.to(device=self.device, dtype=self.dtype),
)
return {
"image_features": image_features,
"last_feat": image_features[-1],
}
def backbone(self, images: torch.Tensor) -> Tuple[List[torch.Tensor], List[int]]:
"""Process the input images through the backbone network.
Inputs:
images (torch.Tensor): The input images.
Returns:
Tuple[List[torch.Tensor], List[int]]: A tuple containing a list of feature maps and a
ist of channels per level.
"""
with torch.no_grad():
results = self.basic_forward(images)
feature_maps = []
for _stage in results:
feature_maps.append(results[_stage].contiguous())
return feature_maps
def basic_forward(self, images):
results = {}
x = self.vision_stem(images)
for _idx in range(len(self.vision_stages)):
x = self.vision_stages[_idx](x)
results[f"stage_{_idx}"] = x
return results
@property
def dtype(self):
return self.vision_stem[0].weight.dtype
@property
def device(self):
return self.vision_stem[0].weight.device
@property
def config(self):
return self.vision_config
@property
def hidden_size(self):
return sum(self.model_channel)
if __name__ == "__main__":
model = ConvNextVisionEncoder()
print(model.state_dict().keys())