import torch import torch.nn as nn from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel class CLIPVisionTower(nn.Module): def __init__(self, vision_tower, args, freeze_vision_tower=False, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, "mm_vision_select_feature", "patch") self.freeze_vision_tower = freeze_vision_tower if not delay_load: self.load_model() elif getattr(args, "unfreeze_mm_vision_tower", False): self.load_model() else: self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) def load_model(self, device_map=None): if self.is_loaded: print( "{} is already loaded, `load_model` called again, skipping.".format( self.vision_tower_name ) ) return self.image_processor = CLIPImageProcessor.from_pretrained( self.vision_tower_name ) self.vision_tower = CLIPVisionModel.from_pretrained( self.vision_tower_name, device_map=device_map ) if self.freeze_vision_tower: self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == "patch": image_features = image_features[:, 1:] elif self.select_feature == "cls_patch": image_features = image_features else: raise ValueError(f"Unexpected select feature: {self.select_feature}") return image_features def forward(self, images): if type(images) is list: image_features = [] for image in images: if self.freeze_vision_tower: with torch.no_grad(): image_forward_out = self.vision_tower( image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True, ) image_feature = self.feature_select(image_forward_out).to( image.dtype ) image_features.append(image_feature) else: image_forward_out = self.vision_tower( image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True, ) image_feature = self.feature_select(image_forward_out).to( image.dtype ) image_features.append(image_feature) else: if self.freeze_vision_tower: with torch.no_grad(): image_forward_out = self.vision_tower( images.to(device=self.device, dtype=self.dtype), output_hidden_states=True, ) image_features = self.feature_select(image_forward_out).to( images.dtype ) else: image_forward_outs = self.vision_tower( images.to(device=self.device, dtype=self.dtype), output_hidden_states=True, ) image_features = self.feature_select(image_forward_outs).to( images.dtype ) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_tower.dtype @property def device(self): return self.vision_tower.device @property def config(self): if self.is_loaded: return self.vision_tower.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2