IEIT-Yuan commited on
Commit
fed8cab
·
verified ·
1 Parent(s): 03c52db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1261 -3
README.md CHANGED
@@ -1,3 +1,1261 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ model-index:
3
+ - name: Yuan-embedding-1.0
4
+ results:
5
+ - dataset:
6
+ config: default
7
+ name: MTEB AFQMC (default)
8
+ revision: None
9
+ split: validation
10
+ type: C-MTEB/AFQMC
11
+ metrics:
12
+ - type: cosine_pearson
13
+ value: 56.398777687800596
14
+ - type: cosine_spearman
15
+ value: 60.2976392017466
16
+ - type: manhattan_pearson
17
+ value: 58.34432755369896
18
+ - type: manhattan_spearman
19
+ value: 59.633715024557176
20
+ - type: euclidean_pearson
21
+ value: 58.33199470250656
22
+ - type: euclidean_spearman
23
+ value: 59.633393360323595
24
+ - type: main_score
25
+ value: 60.2976392017466
26
+ task:
27
+ type: STS
28
+ - dataset:
29
+ config: default
30
+ name: MTEB ATEC (default)
31
+ revision: None
32
+ split: test
33
+ type: C-MTEB/ATEC
34
+ metrics:
35
+ - type: cosine_pearson
36
+ value: 56.418711941754694
37
+ - type: cosine_spearman
38
+ value: 58.49782527525838
39
+ - type: manhattan_pearson
40
+ value: 62.05335398720773
41
+ - type: manhattan_spearman
42
+ value: 58.18176592298454
43
+ - type: euclidean_pearson
44
+ value: 62.06479799788818
45
+ - type: euclidean_spearman
46
+ value: 58.18182671971488
47
+ - type: main_score
48
+ value: 58.49782527525838
49
+ task:
50
+ type: STS
51
+ - dataset:
52
+ config: zh
53
+ name: MTEB AmazonReviewsClassification (zh)
54
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
55
+ split: test
56
+ type: mteb/amazon_reviews_multi
57
+ metrics:
58
+ - type: accuracy
59
+ value: 46.656000000000006
60
+ - type: accuracy_stderr
61
+ value: 1.1704631561907444
62
+ - type: f1
63
+ value: 45.75911645865614
64
+ - type: f1_stderr
65
+ value: 1.323301406018355
66
+ - type: main_score
67
+ value: 46.656000000000006
68
+ task:
69
+ type: Classification
70
+ - dataset:
71
+ config: zh
72
+ name: MTEB AmazonReviewsClassification (zh)
73
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
74
+ split: validation
75
+ type: mteb/amazon_reviews_multi
76
+ metrics:
77
+ - type: accuracy
78
+ value: 45.84599999999999
79
+ - type: accuracy_stderr
80
+ value: 1.0539468677310073
81
+ - type: f1
82
+ value: 45.03273670979488
83
+ - type: f1_stderr
84
+ value: 1.00417269917164
85
+ - type: main_score
86
+ value: 45.84599999999999
87
+ task:
88
+ type: Classification
89
+ - dataset:
90
+ config: default
91
+ name: MTEB BQ (default)
92
+ revision: None
93
+ split: test
94
+ type: C-MTEB/BQ
95
+ metrics:
96
+ - type: cosine_pearson
97
+ value: 71.33099160181597
98
+ - type: cosine_spearman
99
+ value: 73.06963287952199
100
+ - type: manhattan_pearson
101
+ value: 70.65314181752566
102
+ - type: manhattan_spearman
103
+ value: 72.34604440078336
104
+ - type: euclidean_pearson
105
+ value: 70.67624292501411
106
+ - type: euclidean_spearman
107
+ value: 72.3597691712343
108
+ - type: main_score
109
+ value: 73.06963287952199
110
+ task:
111
+ type: STS
112
+ - dataset:
113
+ config: default
114
+ name: MTEB CLSClusteringP2P (default)
115
+ revision: None
116
+ split: test
117
+ type: C-MTEB/CLSClusteringP2P
118
+ metrics:
119
+ - type: v_measure
120
+ value: 53.79921861868626
121
+ - type: v_measure_std
122
+ value: 2.073016548125077
123
+ - type: main_score
124
+ value: 53.79921861868626
125
+ task:
126
+ type: Clustering
127
+ - dataset:
128
+ config: default
129
+ name: MTEB CLSClusteringS2S (default)
130
+ revision: None
131
+ split: test
132
+ type: C-MTEB/CLSClusteringS2S
133
+ metrics:
134
+ - type: v_measure
135
+ value: 46.22496957569903
136
+ - type: v_measure_std
137
+ value: 1.4660184854965337
138
+ - type: main_score
139
+ value: 46.22496957569903
140
+ task:
141
+ type: Clustering
142
+ - dataset:
143
+ config: default
144
+ name: MTEB CMedQAv1-reranking (default)
145
+ revision: None
146
+ split: test
147
+ type: C-MTEB/CMedQAv1-reranking
148
+ metrics:
149
+ - type: map
150
+ value: 90.00883554654739
151
+ - type: mrr
152
+ value: 92.02547619047618
153
+ - type: main_score
154
+ value: 90.00883554654739
155
+ task:
156
+ type: Reranking
157
+ - dataset:
158
+ config: default
159
+ name: MTEB CMedQAv2-reranking (default)
160
+ revision: None
161
+ split: test
162
+ type: C-MTEB/CMedQAv2-reranking
163
+ metrics:
164
+ - type: map
165
+ value: 92.47561424216632
166
+ - type: mrr
167
+ value: 94.60039682539681
168
+ - type: main_score
169
+ value: 92.47561424216632
170
+ task:
171
+ type: Reranking
172
+ - dataset:
173
+ config: default
174
+ name: MTEB CmedqaRetrieval (default)
175
+ revision: None
176
+ split: dev
177
+ type: C-MTEB/CmedqaRetrieval
178
+ metrics:
179
+ - type: map_at_1
180
+ value: 29.935000000000002
181
+ - type: map_at_10
182
+ value: 44.143
183
+ - type: map_at_100
184
+ value: 45.999
185
+ - type: map_at_1000
186
+ value: 46.084
187
+ - type: map_at_3
188
+ value: 39.445
189
+ - type: map_at_5
190
+ value: 42.218
191
+ - type: mrr_at_1
192
+ value: 44.711
193
+ - type: mrr_at_10
194
+ value: 53.88699999999999
195
+ - type: mrr_at_100
196
+ value: 54.813
197
+ - type: mrr_at_1000
198
+ value: 54.834
199
+ - type: mrr_at_3
200
+ value: 51.1
201
+ - type: mrr_at_5
202
+ value: 52.827
203
+ - type: ndcg_at_1
204
+ value: 44.711
205
+ - type: ndcg_at_10
206
+ value: 51.471999999999994
207
+ - type: ndcg_at_100
208
+ value: 58.362
209
+ - type: ndcg_at_1000
210
+ value: 59.607
211
+ - type: ndcg_at_3
212
+ value: 45.558
213
+ - type: ndcg_at_5
214
+ value: 48.345
215
+ - type: precision_at_1
216
+ value: 44.711
217
+ - type: precision_at_10
218
+ value: 11.1
219
+ - type: precision_at_100
220
+ value: 1.6650000000000003
221
+ - type: precision_at_1000
222
+ value: 0.184
223
+ - type: precision_at_3
224
+ value: 25.306
225
+ - type: precision_at_5
226
+ value: 18.404999999999998
227
+ - type: recall_at_1
228
+ value: 29.935000000000002
229
+ - type: recall_at_10
230
+ value: 63.366
231
+ - type: recall_at_100
232
+ value: 91.375
233
+ - type: recall_at_1000
234
+ value: 99.167
235
+ - type: recall_at_3
236
+ value: 45.888
237
+ - type: recall_at_5
238
+ value: 54.169
239
+ - type: main_score
240
+ value: 51.471999999999994
241
+ task:
242
+ type: Retrieval
243
+ - dataset:
244
+ config: default
245
+ name: MTEB Cmnli (default)
246
+ revision: None
247
+ split: validation
248
+ type: C-MTEB/CMNLI
249
+ metrics:
250
+ - type: cos_sim_accuracy
251
+ value: 80.3968731208659
252
+ - type: cos_sim_accuracy_threshold
253
+ value: 86.61384582519531
254
+ - type: cos_sim_ap
255
+ value: 88.21894124132636
256
+ - type: cos_sim_f1
257
+ value: 81.67308750687947
258
+ - type: cos_sim_f1_threshold
259
+ value: 86.04017496109009
260
+ - type: cos_sim_precision
261
+ value: 77.1630615640599
262
+ - type: cos_sim_recall
263
+ value: 86.7430441898527
264
+ - type: dot_accuracy
265
+ value: 67.7931449188214
266
+ - type: dot_accuracy_threshold
267
+ value: 92027.47802734375
268
+ - type: dot_ap
269
+ value: 75.73048600318765
270
+ - type: dot_f1
271
+ value: 71.64554512914772
272
+ - type: dot_f1_threshold
273
+ value: 83535.70556640625
274
+ - type: dot_precision
275
+ value: 61.1056105610561
276
+ - type: dot_recall
277
+ value: 86.57937806873977
278
+ - type: euclidean_accuracy
279
+ value: 78.52074564040889
280
+ - type: euclidean_accuracy_threshold
281
+ value: 1688.486671447754
282
+ - type: euclidean_ap
283
+ value: 86.40643721988414
284
+ - type: euclidean_f1
285
+ value: 79.97822536744692
286
+ - type: euclidean_f1_threshold
287
+ value: 1748.1914520263672
288
+ - type: euclidean_precision
289
+ value: 74.83700081499592
290
+ - type: euclidean_recall
291
+ value: 85.87795183539865
292
+ - type: manhattan_accuracy
293
+ value: 78.59290438965725
294
+ - type: manhattan_accuracy_threshold
295
+ value: 57066.162109375
296
+ - type: manhattan_ap
297
+ value: 86.38300352696045
298
+ - type: manhattan_f1
299
+ value: 79.84587391630097
300
+ - type: manhattan_f1_threshold
301
+ value: 59686.376953125
302
+ - type: manhattan_precision
303
+ value: 73.62810896170548
304
+ - type: manhattan_recall
305
+ value: 87.21066167874679
306
+ - type: max_accuracy
307
+ value: 80.3968731208659
308
+ - type: max_ap
309
+ value: 88.21894124132636
310
+ - type: max_f1
311
+ value: 81.67308750687947
312
+ task:
313
+ type: PairClassification
314
+ - dataset:
315
+ config: default
316
+ name: MTEB CovidRetrieval (default)
317
+ revision: None
318
+ split: dev
319
+ type: C-MTEB/CovidRetrieval
320
+ metrics:
321
+ - type: map_at_1
322
+ value: 85.485
323
+ - type: map_at_10
324
+ value: 91.135
325
+ - type: map_at_100
326
+ value: 91.16199999999999
327
+ - type: map_at_1000
328
+ value: 91.16300000000001
329
+ - type: map_at_3
330
+ value: 90.499
331
+ - type: map_at_5
332
+ value: 90.91
333
+ - type: mrr_at_1
334
+ value: 85.88
335
+ - type: mrr_at_10
336
+ value: 91.133
337
+ - type: mrr_at_100
338
+ value: 91.16
339
+ - type: mrr_at_1000
340
+ value: 91.161
341
+ - type: mrr_at_3
342
+ value: 90.551
343
+ - type: mrr_at_5
344
+ value: 90.904
345
+ - type: ndcg_at_1
346
+ value: 85.88
347
+ - type: ndcg_at_10
348
+ value: 93.163
349
+ - type: ndcg_at_100
350
+ value: 93.282
351
+ - type: ndcg_at_1000
352
+ value: 93.309
353
+ - type: ndcg_at_3
354
+ value: 91.943
355
+ - type: ndcg_at_5
356
+ value: 92.637
357
+ - type: precision_at_1
358
+ value: 85.88
359
+ - type: precision_at_10
360
+ value: 10.032
361
+ - type: precision_at_100
362
+ value: 1.008
363
+ - type: precision_at_1000
364
+ value: 0.101
365
+ - type: precision_at_3
366
+ value: 32.315
367
+ - type: precision_at_5
368
+ value: 19.747
369
+ - type: recall_at_1
370
+ value: 85.485
371
+ - type: recall_at_10
372
+ value: 99.262
373
+ - type: recall_at_100
374
+ value: 99.789
375
+ - type: recall_at_1000
376
+ value: 100.0
377
+ - type: recall_at_3
378
+ value: 95.96900000000001
379
+ - type: recall_at_5
380
+ value: 97.682
381
+ - type: main_score
382
+ value: 93.163
383
+ task:
384
+ type: Retrieval
385
+ - dataset:
386
+ config: default
387
+ name: MTEB DuRetrieval (default)
388
+ revision: None
389
+ split: dev
390
+ type: C-MTEB/DuRetrieval
391
+ metrics:
392
+ - type: map_at_1
393
+ value: 27.29
394
+ - type: map_at_10
395
+ value: 82.832
396
+ - type: map_at_100
397
+ value: 85.482
398
+ - type: map_at_1000
399
+ value: 85.52
400
+ - type: map_at_3
401
+ value: 57.964000000000006
402
+ - type: map_at_5
403
+ value: 72.962
404
+ - type: mrr_at_1
405
+ value: 92.35
406
+ - type: mrr_at_10
407
+ value: 94.77499999999999
408
+ - type: mrr_at_100
409
+ value: 94.825
410
+ - type: mrr_at_1000
411
+ value: 94.827
412
+ - type: mrr_at_3
413
+ value: 94.50800000000001
414
+ - type: mrr_at_5
415
+ value: 94.688
416
+ - type: ndcg_at_1
417
+ value: 92.35
418
+ - type: ndcg_at_10
419
+ value: 89.432
420
+ - type: ndcg_at_100
421
+ value: 91.813
422
+ - type: ndcg_at_1000
423
+ value: 92.12
424
+ - type: ndcg_at_3
425
+ value: 88.804
426
+ - type: ndcg_at_5
427
+ value: 87.681
428
+ - type: precision_at_1
429
+ value: 92.35
430
+ - type: precision_at_10
431
+ value: 42.32
432
+ - type: precision_at_100
433
+ value: 4.812
434
+ - type: precision_at_1000
435
+ value: 0.48900000000000005
436
+ - type: precision_at_3
437
+ value: 79.367
438
+ - type: precision_at_5
439
+ value: 66.86999999999999
440
+ - type: recall_at_1
441
+ value: 27.29
442
+ - type: recall_at_10
443
+ value: 90.093
444
+ - type: recall_at_100
445
+ value: 97.916
446
+ - type: recall_at_1000
447
+ value: 99.40299999999999
448
+ - type: recall_at_3
449
+ value: 59.816
450
+ - type: recall_at_5
451
+ value: 76.889
452
+ - type: main_score
453
+ value: 89.432
454
+ task:
455
+ type: Retrieval
456
+ - dataset:
457
+ config: default
458
+ name: MTEB EcomRetrieval (default)
459
+ revision: None
460
+ split: dev
461
+ type: C-MTEB/EcomRetrieval
462
+ metrics:
463
+ - type: map_at_1
464
+ value: 55.2
465
+ - type: map_at_10
466
+ value: 65.767
467
+ - type: map_at_100
468
+ value: 66.208
469
+ - type: map_at_1000
470
+ value: 66.219
471
+ - type: map_at_3
472
+ value: 63.1
473
+ - type: map_at_5
474
+ value: 64.865
475
+ - type: mrr_at_1
476
+ value: 55.2
477
+ - type: mrr_at_10
478
+ value: 65.767
479
+ - type: mrr_at_100
480
+ value: 66.208
481
+ - type: mrr_at_1000
482
+ value: 66.219
483
+ - type: mrr_at_3
484
+ value: 63.1
485
+ - type: mrr_at_5
486
+ value: 64.865
487
+ - type: ndcg_at_1
488
+ value: 55.2
489
+ - type: ndcg_at_10
490
+ value: 70.875
491
+ - type: ndcg_at_100
492
+ value: 72.931
493
+ - type: ndcg_at_1000
494
+ value: 73.2
495
+ - type: ndcg_at_3
496
+ value: 65.526
497
+ - type: ndcg_at_5
498
+ value: 68.681
499
+ - type: precision_at_1
500
+ value: 55.2
501
+ - type: precision_at_10
502
+ value: 8.690000000000001
503
+ - type: precision_at_100
504
+ value: 0.963
505
+ - type: precision_at_1000
506
+ value: 0.098
507
+ - type: precision_at_3
508
+ value: 24.166999999999998
509
+ - type: precision_at_5
510
+ value: 16.02
511
+ - type: recall_at_1
512
+ value: 55.2
513
+ - type: recall_at_10
514
+ value: 86.9
515
+ - type: recall_at_100
516
+ value: 96.3
517
+ - type: recall_at_1000
518
+ value: 98.4
519
+ - type: recall_at_3
520
+ value: 72.5
521
+ - type: recall_at_5
522
+ value: 80.10000000000001
523
+ - type: main_score
524
+ value: 70.875
525
+ task:
526
+ type: Retrieval
527
+ - dataset:
528
+ config: default
529
+ name: MTEB IFlyTek (default)
530
+ revision: None
531
+ split: validation
532
+ type: C-MTEB/IFlyTek-classification
533
+ metrics:
534
+ - type: accuracy
535
+ value: 46.95652173913043
536
+ - type: accuracy_stderr
537
+ value: 0.8816372193041417
538
+ - type: f1
539
+ value: 38.870262239396496
540
+ - type: f1_stderr
541
+ value: 1.1248427890133785
542
+ - type: main_score
543
+ value: 46.95652173913043
544
+ task:
545
+ type: Classification
546
+ - dataset:
547
+ config: default
548
+ name: MTEB JDReview (default)
549
+ revision: None
550
+ split: test
551
+ type: C-MTEB/JDReview-classification
552
+ metrics:
553
+ - type: accuracy
554
+ value: 87.18574108818011
555
+ - type: accuracy_stderr
556
+ value: 1.828763099528331
557
+ - type: ap
558
+ value: 56.516251295719414
559
+ - type: ap_stderr
560
+ value: 3.3789918068717895
561
+ - type: f1
562
+ value: 82.04209146803106
563
+ - type: f1_stderr
564
+ value: 2.005027201503808
565
+ - type: main_score
566
+ value: 87.18574108818011
567
+ task:
568
+ type: Classification
569
+ - dataset:
570
+ config: default
571
+ name: MTEB LCQMC (default)
572
+ revision: None
573
+ split: test
574
+ type: C-MTEB/LCQMC
575
+ metrics:
576
+ - type: cosine_pearson
577
+ value: 72.67112275922743
578
+ - type: cosine_spearman
579
+ value: 78.44376213964316
580
+ - type: manhattan_pearson
581
+ value: 77.51766838932976
582
+ - type: manhattan_spearman
583
+ value: 78.02885255071602
584
+ - type: euclidean_pearson
585
+ value: 77.5292348074114
586
+ - type: euclidean_spearman
587
+ value: 78.04277103380235
588
+ - type: main_score
589
+ value: 78.44376213964316
590
+ task:
591
+ type: STS
592
+ - dataset:
593
+ config: default
594
+ name: MTEB MMarcoReranking (default)
595
+ revision: None
596
+ split: dev
597
+ type: C-MTEB/Mmarco-reranking
598
+ metrics:
599
+ - type: map
600
+ value: 37.021133625346174
601
+ - type: mrr
602
+ value: 35.81428571428572
603
+ - type: main_score
604
+ value: 37.021133625346174
605
+ task:
606
+ type: Reranking
607
+ - dataset:
608
+ config: default
609
+ name: MTEB MMarcoRetrieval (default)
610
+ revision: None
611
+ split: dev
612
+ type: C-MTEB/MMarcoRetrieval
613
+ metrics:
614
+ - type: map_at_1
615
+ value: 69.624
616
+ - type: map_at_10
617
+ value: 78.764
618
+ - type: map_at_100
619
+ value: 79.038
620
+ - type: map_at_1000
621
+ value: 79.042
622
+ - type: map_at_3
623
+ value: 76.846
624
+ - type: map_at_5
625
+ value: 78.106
626
+ - type: mrr_at_1
627
+ value: 71.905
628
+ - type: mrr_at_10
629
+ value: 79.268
630
+ - type: mrr_at_100
631
+ value: 79.508
632
+ - type: mrr_at_1000
633
+ value: 79.512
634
+ - type: mrr_at_3
635
+ value: 77.60000000000001
636
+ - type: mrr_at_5
637
+ value: 78.701
638
+ - type: ndcg_at_1
639
+ value: 71.905
640
+ - type: ndcg_at_10
641
+ value: 82.414
642
+ - type: ndcg_at_100
643
+ value: 83.59
644
+ - type: ndcg_at_1000
645
+ value: 83.708
646
+ - type: ndcg_at_3
647
+ value: 78.803
648
+ - type: ndcg_at_5
649
+ value: 80.94
650
+ - type: precision_at_1
651
+ value: 71.905
652
+ - type: precision_at_10
653
+ value: 9.901
654
+ - type: precision_at_100
655
+ value: 1.048
656
+ - type: precision_at_1000
657
+ value: 0.106
658
+ - type: precision_at_3
659
+ value: 29.479
660
+ - type: precision_at_5
661
+ value: 18.828
662
+ - type: recall_at_1
663
+ value: 69.624
664
+ - type: recall_at_10
665
+ value: 93.149
666
+ - type: recall_at_100
667
+ value: 98.367
668
+ - type: recall_at_1000
669
+ value: 99.29299999999999
670
+ - type: recall_at_3
671
+ value: 83.67599999999999
672
+ - type: recall_at_5
673
+ value: 88.752
674
+ - type: main_score
675
+ value: 82.414
676
+ task:
677
+ type: Retrieval
678
+ - dataset:
679
+ config: zh-CN
680
+ name: MTEB MassiveIntentClassification (zh-CN)
681
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
682
+ split: test
683
+ type: mteb/amazon_massive_intent
684
+ metrics:
685
+ - type: accuracy
686
+ value: 77.36045729657029
687
+ - type: accuracy_stderr
688
+ value: 0.8944498935111289
689
+ - type: f1
690
+ value: 73.73485209304225
691
+ - type: f1_stderr
692
+ value: 0.8615191738484445
693
+ - type: main_score
694
+ value: 77.36045729657029
695
+ task:
696
+ type: Classification
697
+ - dataset:
698
+ config: zh-CN
699
+ name: MTEB MassiveIntentClassification (zh-CN)
700
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
701
+ split: validation
702
+ type: mteb/amazon_massive_intent
703
+ metrics:
704
+ - type: accuracy
705
+ value: 78.16035415641909
706
+ - type: accuracy_stderr
707
+ value: 0.7514724220154535
708
+ - type: f1
709
+ value: 75.32402452596266
710
+ - type: f1_stderr
711
+ value: 0.5969737694527888
712
+ - type: main_score
713
+ value: 78.16035415641909
714
+ task:
715
+ type: Classification
716
+ - dataset:
717
+ config: zh-CN
718
+ name: MTEB MassiveScenarioClassification (zh-CN)
719
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
720
+ split: test
721
+ type: mteb/amazon_massive_scenario
722
+ metrics:
723
+ - type: accuracy
724
+ value: 83.31203765971755
725
+ - type: accuracy_stderr
726
+ value: 1.1063564012537301
727
+ - type: f1
728
+ value: 82.81655735858999
729
+ - type: f1_stderr
730
+ value: 0.9643568609098954
731
+ - type: main_score
732
+ value: 83.31203765971755
733
+ task:
734
+ type: Classification
735
+ - dataset:
736
+ config: zh-CN
737
+ name: MTEB MassiveScenarioClassification (zh-CN)
738
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
739
+ split: validation
740
+ type: mteb/amazon_massive_scenario
741
+ metrics:
742
+ - type: accuracy
743
+ value: 83.11362518445647
744
+ - type: accuracy_stderr
745
+ value: 1.252141689154366
746
+ - type: f1
747
+ value: 82.56555569957769
748
+ - type: f1_stderr
749
+ value: 0.858322314243248
750
+ - type: main_score
751
+ value: 83.11362518445647
752
+ task:
753
+ type: Classification
754
+ - dataset:
755
+ config: default
756
+ name: MTEB MedicalRetrieval (default)
757
+ revision: None
758
+ split: dev
759
+ type: C-MTEB/MedicalRetrieval
760
+ metrics:
761
+ - type: map_at_1
762
+ value: 63.1
763
+ - type: map_at_10
764
+ value: 70.816
765
+ - type: map_at_100
766
+ value: 71.368
767
+ - type: map_at_1000
768
+ value: 71.379
769
+ - type: map_at_3
770
+ value: 69.033
771
+ - type: map_at_5
772
+ value: 70.028
773
+ - type: mrr_at_1
774
+ value: 63.4
775
+ - type: mrr_at_10
776
+ value: 70.98400000000001
777
+ - type: mrr_at_100
778
+ value: 71.538
779
+ - type: mrr_at_1000
780
+ value: 71.548
781
+ - type: mrr_at_3
782
+ value: 69.19999999999999
783
+ - type: mrr_at_5
784
+ value: 70.195
785
+ - type: ndcg_at_1
786
+ value: 63.1
787
+ - type: ndcg_at_10
788
+ value: 74.665
789
+ - type: ndcg_at_100
790
+ value: 77.16199999999999
791
+ - type: ndcg_at_1000
792
+ value: 77.408
793
+ - type: ndcg_at_3
794
+ value: 70.952
795
+ - type: ndcg_at_5
796
+ value: 72.776
797
+ - type: precision_at_1
798
+ value: 63.1
799
+ - type: precision_at_10
800
+ value: 8.68
801
+ - type: precision_at_100
802
+ value: 0.9809999999999999
803
+ - type: precision_at_1000
804
+ value: 0.1
805
+ - type: precision_at_3
806
+ value: 25.5
807
+ - type: precision_at_5
808
+ value: 16.2
809
+ - type: recall_at_1
810
+ value: 63.1
811
+ - type: recall_at_10
812
+ value: 86.8
813
+ - type: recall_at_100
814
+ value: 98.1
815
+ - type: recall_at_1000
816
+ value: 100.0
817
+ - type: recall_at_3
818
+ value: 76.5
819
+ - type: recall_at_5
820
+ value: 81.0
821
+ - type: main_score
822
+ value: 74.665
823
+ task:
824
+ type: Retrieval
825
+ - dataset:
826
+ config: default
827
+ name: MTEB MultilingualSentiment (default)
828
+ revision: None
829
+ split: validation
830
+ type: C-MTEB/MultilingualSentiment-classification
831
+ metrics:
832
+ - type: accuracy
833
+ value: 75.98
834
+ - type: accuracy_stderr
835
+ value: 0.8634813257969153
836
+ - type: f1
837
+ value: 75.98312901227456
838
+ - type: f1_stderr
839
+ value: 0.9813231777702479
840
+ - type: main_score
841
+ value: 75.98
842
+ task:
843
+ type: Classification
844
+ - dataset:
845
+ config: default
846
+ name: MTEB Ocnli (default)
847
+ revision: None
848
+ split: validation
849
+ type: C-MTEB/OCNLI
850
+ metrics:
851
+ - type: cos_sim_accuracy
852
+ value: 80.02165674066053
853
+ - type: cos_sim_accuracy_threshold
854
+ value: 84.70024466514587
855
+ - type: cos_sim_ap
856
+ value: 84.5948682253982
857
+ - type: cos_sim_f1
858
+ value: 80.84291187739463
859
+ - type: cos_sim_f1_threshold
860
+ value: 82.62853622436523
861
+ - type: cos_sim_precision
862
+ value: 73.97020157756354
863
+ - type: cos_sim_recall
864
+ value: 89.1235480464625
865
+ - type: dot_accuracy
866
+ value: 71.52138603140227
867
+ - type: dot_accuracy_threshold
868
+ value: 84206.94580078125
869
+ - type: dot_ap
870
+ value: 77.69986172282461
871
+ - type: dot_f1
872
+ value: 74.76467951591216
873
+ - type: dot_f1_threshold
874
+ value: 78842.08984375
875
+ - type: dot_precision
876
+ value: 64.95327102803739
877
+ - type: dot_recall
878
+ value: 88.0675818373812
879
+ - type: euclidean_accuracy
880
+ value: 76.01515971846237
881
+ - type: euclidean_accuracy_threshold
882
+ value: 1818.9674377441406
883
+ - type: euclidean_ap
884
+ value: 80.84369691331835
885
+ - type: euclidean_f1
886
+ value: 78.08988764044943
887
+ - type: euclidean_f1_threshold
888
+ value: 1922.1363067626953
889
+ - type: euclidean_precision
890
+ value: 70.14297729184187
891
+ - type: euclidean_recall
892
+ value: 88.0675818373812
893
+ - type: manhattan_accuracy
894
+ value: 76.12344342176502
895
+ - type: manhattan_accuracy_threshold
896
+ value: 61934.478759765625
897
+ - type: manhattan_ap
898
+ value: 80.8051823205177
899
+ - type: manhattan_f1
900
+ value: 78.21596244131456
901
+ - type: manhattan_f1_threshold
902
+ value: 64840.447998046875
903
+ - type: manhattan_precision
904
+ value: 70.41420118343196
905
+ - type: manhattan_recall
906
+ value: 87.96198521647307
907
+ - type: max_accuracy
908
+ value: 80.02165674066053
909
+ - type: max_ap
910
+ value: 84.5948682253982
911
+ - type: max_f1
912
+ value: 80.84291187739463
913
+ task:
914
+ type: PairClassification
915
+ - dataset:
916
+ config: default
917
+ name: MTEB OnlineShopping (default)
918
+ revision: None
919
+ split: test
920
+ type: C-MTEB/OnlineShopping-classification
921
+ metrics:
922
+ - type: accuracy
923
+ value: 93.63
924
+ - type: accuracy_stderr
925
+ value: 0.7253275122315392
926
+ - type: ap
927
+ value: 91.66092551327398
928
+ - type: ap_stderr
929
+ value: 0.9661774073521741
930
+ - type: f1
931
+ value: 93.61696896914624
932
+ - type: f1_stderr
933
+ value: 0.7232416235078093
934
+ - type: main_score
935
+ value: 93.63
936
+ task:
937
+ type: Classification
938
+ - dataset:
939
+ config: default
940
+ name: MTEB PAWSX (default)
941
+ revision: None
942
+ split: test
943
+ type: C-MTEB/PAWSX
944
+ metrics:
945
+ - type: cosine_pearson
946
+ value: 27.420084312732477
947
+ - type: cosine_spearman
948
+ value: 36.615019324915316
949
+ - type: manhattan_pearson
950
+ value: 35.38814491527626
951
+ - type: manhattan_spearman
952
+ value: 35.989020517540105
953
+ - type: euclidean_pearson
954
+ value: 35.322828019800475
955
+ - type: euclidean_spearman
956
+ value: 35.93118948093057
957
+ - type: main_score
958
+ value: 36.615019324915316
959
+ task:
960
+ type: STS
961
+ - dataset:
962
+ config: default
963
+ name: MTEB QBQTC (default)
964
+ revision: None
965
+ split: test
966
+ type: C-MTEB/QBQTC
967
+ metrics:
968
+ - type: cosine_pearson
969
+ value: 36.51779732355864
970
+ - type: cosine_spearman
971
+ value: 38.35615142712016
972
+ - type: manhattan_pearson
973
+ value: 31.00096996824444
974
+ - type: manhattan_spearman
975
+ value: 35.22782463612116
976
+ - type: euclidean_pearson
977
+ value: 31.04604995563808
978
+ - type: euclidean_spearman
979
+ value: 35.271420992011485
980
+ - type: main_score
981
+ value: 38.35615142712016
982
+ task:
983
+ type: STS
984
+ - dataset:
985
+ config: zh
986
+ name: MTEB STS22 (zh)
987
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
988
+ split: test
989
+ type: mteb/sts22-crosslingual-sts
990
+ metrics:
991
+ - type: cosine_pearson
992
+ value: 60.76376961662733
993
+ - type: cosine_spearman
994
+ value: 65.93112312064913
995
+ - type: manhattan_pearson
996
+ value: 60.18998639945854
997
+ - type: manhattan_spearman
998
+ value: 64.37697612695015
999
+ - type: euclidean_pearson
1000
+ value: 60.287759656277814
1001
+ - type: euclidean_spearman
1002
+ value: 64.37685757691955
1003
+ - type: main_score
1004
+ value: 65.93112312064913
1005
+ task:
1006
+ type: STS
1007
+ - dataset:
1008
+ config: default
1009
+ name: MTEB STSB (default)
1010
+ revision: None
1011
+ split: test
1012
+ type: C-MTEB/STSB
1013
+ metrics:
1014
+ - type: cosine_pearson
1015
+ value: 79.6320389543562
1016
+ - type: cosine_spearman
1017
+ value: 81.9230633773663
1018
+ - type: manhattan_pearson
1019
+ value: 80.20746913195181
1020
+ - type: manhattan_spearman
1021
+ value: 80.43150657863002
1022
+ - type: euclidean_pearson
1023
+ value: 80.1796408157508
1024
+ - type: euclidean_spearman
1025
+ value: 80.42930201788549
1026
+ - type: main_score
1027
+ value: 81.9230633773663
1028
+ task:
1029
+ type: STS
1030
+ - dataset:
1031
+ config: default
1032
+ name: MTEB T2Reranking (default)
1033
+ revision: None
1034
+ split: dev
1035
+ type: C-MTEB/T2Reranking
1036
+ metrics:
1037
+ - type: map
1038
+ value: 66.67836204644267
1039
+ - type: mrr
1040
+ value: 76.1707222383424
1041
+ - type: main_score
1042
+ value: 66.67836204644267
1043
+ task:
1044
+ type: Reranking
1045
+ - dataset:
1046
+ config: default
1047
+ name: MTEB T2Retrieval (default)
1048
+ revision: None
1049
+ split: dev
1050
+ type: C-MTEB/T2Retrieval
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 28.015
1054
+ - type: map_at_10
1055
+ value: 78.281
1056
+ - type: map_at_100
1057
+ value: 81.89699999999999
1058
+ - type: map_at_1000
1059
+ value: 81.95599999999999
1060
+ - type: map_at_3
1061
+ value: 55.117000000000004
1062
+ - type: map_at_5
1063
+ value: 67.647
1064
+ - type: mrr_at_1
1065
+ value: 90.496
1066
+ - type: mrr_at_10
1067
+ value: 93.132
1068
+ - type: mrr_at_100
1069
+ value: 93.207
1070
+ - type: mrr_at_1000
1071
+ value: 93.209
1072
+ - type: mrr_at_3
1073
+ value: 92.714
1074
+ - type: mrr_at_5
1075
+ value: 93.0
1076
+ - type: ndcg_at_1
1077
+ value: 90.496
1078
+ - type: ndcg_at_10
1079
+ value: 85.71600000000001
1080
+ - type: ndcg_at_100
1081
+ value: 89.164
1082
+ - type: ndcg_at_1000
1083
+ value: 89.71000000000001
1084
+ - type: ndcg_at_3
1085
+ value: 86.876
1086
+ - type: ndcg_at_5
1087
+ value: 85.607
1088
+ - type: precision_at_1
1089
+ value: 90.496
1090
+ - type: precision_at_10
1091
+ value: 42.398
1092
+ - type: precision_at_100
1093
+ value: 5.031
1094
+ - type: precision_at_1000
1095
+ value: 0.516
1096
+ - type: precision_at_3
1097
+ value: 75.729
1098
+ - type: precision_at_5
1099
+ value: 63.522
1100
+ - type: recall_at_1
1101
+ value: 28.015
1102
+ - type: recall_at_10
1103
+ value: 84.83000000000001
1104
+ - type: recall_at_100
1105
+ value: 95.964
1106
+ - type: recall_at_1000
1107
+ value: 98.67399999999999
1108
+ - type: recall_at_3
1109
+ value: 56.898
1110
+ - type: recall_at_5
1111
+ value: 71.163
1112
+ - type: main_score
1113
+ value: 85.71600000000001
1114
+ task:
1115
+ type: Retrieval
1116
+ - dataset:
1117
+ config: default
1118
+ name: MTEB TNews (default)
1119
+ revision: None
1120
+ split: validation
1121
+ type: C-MTEB/TNews-classification
1122
+ metrics:
1123
+ - type: accuracy
1124
+ value: 51.702999999999996
1125
+ - type: accuracy_stderr
1126
+ value: 0.8183526134863877
1127
+ - type: f1
1128
+ value: 50.35330734766769
1129
+ - type: f1_stderr
1130
+ value: 0.740275098366631
1131
+ - type: main_score
1132
+ value: 51.702999999999996
1133
+ task:
1134
+ type: Classification
1135
+ - dataset:
1136
+ config: default
1137
+ name: MTEB ThuNewsClusteringP2P (default)
1138
+ revision: None
1139
+ split: test
1140
+ type: C-MTEB/ThuNewsClusteringP2P
1141
+ metrics:
1142
+ - type: v_measure
1143
+ value: 72.78709391223538
1144
+ - type: v_measure_std
1145
+ value: 1.5927130767880417
1146
+ - type: main_score
1147
+ value: 72.78709391223538
1148
+ task:
1149
+ type: Clustering
1150
+ - dataset:
1151
+ config: default
1152
+ name: MTEB ThuNewsClusteringS2S (default)
1153
+ revision: None
1154
+ split: test
1155
+ type: C-MTEB/ThuNewsClusteringS2S
1156
+ metrics:
1157
+ - type: v_measure
1158
+ value: 66.80392174700211
1159
+ - type: v_measure_std
1160
+ value: 1.845756306548485
1161
+ - type: main_score
1162
+ value: 66.80392174700211
1163
+ task:
1164
+ type: Clustering
1165
+ - dataset:
1166
+ config: default
1167
+ name: MTEB VideoRetrieval (default)
1168
+ revision: None
1169
+ split: dev
1170
+ type: C-MTEB/VideoRetrieval
1171
+ metrics:
1172
+ - type: map_at_1
1173
+ value: 65.5
1174
+ - type: map_at_10
1175
+ value: 75.38
1176
+ - type: map_at_100
1177
+ value: 75.756
1178
+ - type: map_at_1000
1179
+ value: 75.75800000000001
1180
+ - type: map_at_3
1181
+ value: 73.8
1182
+ - type: map_at_5
1183
+ value: 74.895
1184
+ - type: mrr_at_1
1185
+ value: 65.5
1186
+ - type: mrr_at_10
1187
+ value: 75.38
1188
+ - type: mrr_at_100
1189
+ value: 75.756
1190
+ - type: mrr_at_1000
1191
+ value: 75.75800000000001
1192
+ - type: mrr_at_3
1193
+ value: 73.8
1194
+ - type: mrr_at_5
1195
+ value: 74.895
1196
+ - type: ndcg_at_1
1197
+ value: 65.5
1198
+ - type: ndcg_at_10
1199
+ value: 79.572
1200
+ - type: ndcg_at_100
1201
+ value: 81.17699999999999
1202
+ - type: ndcg_at_1000
1203
+ value: 81.227
1204
+ - type: ndcg_at_3
1205
+ value: 76.44999999999999
1206
+ - type: ndcg_at_5
1207
+ value: 78.404
1208
+ - type: precision_at_1
1209
+ value: 65.5
1210
+ - type: precision_at_10
1211
+ value: 9.24
1212
+ - type: precision_at_100
1213
+ value: 0.9939999999999999
1214
+ - type: precision_at_1000
1215
+ value: 0.1
1216
+ - type: precision_at_3
1217
+ value: 28.033
1218
+ - type: precision_at_5
1219
+ value: 17.76
1220
+ - type: recall_at_1
1221
+ value: 65.5
1222
+ - type: recall_at_10
1223
+ value: 92.4
1224
+ - type: recall_at_100
1225
+ value: 99.4
1226
+ - type: recall_at_1000
1227
+ value: 99.8
1228
+ - type: recall_at_3
1229
+ value: 84.1
1230
+ - type: recall_at_5
1231
+ value: 88.8
1232
+ - type: main_score
1233
+ value: 79.572
1234
+ task:
1235
+ type: Retrieval
1236
+ - dataset:
1237
+ config: default
1238
+ name: MTEB Waimai (default)
1239
+ revision: None
1240
+ split: test
1241
+ type: C-MTEB/waimai-classification
1242
+ metrics:
1243
+ - type: accuracy
1244
+ value: 88.70000000000002
1245
+ - type: accuracy_stderr
1246
+ value: 1.1713240371477067
1247
+ - type: ap
1248
+ value: 73.95357766936226
1249
+ - type: ap_stderr
1250
+ value: 2.3258932220157638
1251
+ - type: f1
1252
+ value: 87.27541455081986
1253
+ - type: f1_stderr
1254
+ value: 1.185968184225313
1255
+ - type: main_score
1256
+ value: 88.70000000000002
1257
+ task:
1258
+ type: Classification
1259
+ tags:
1260
+ - mteb
1261
+ ---