Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1261 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
model-index:
|
3 |
+
- name: Yuan-embedding-1.0
|
4 |
+
results:
|
5 |
+
- dataset:
|
6 |
+
config: default
|
7 |
+
name: MTEB AFQMC (default)
|
8 |
+
revision: None
|
9 |
+
split: validation
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
metrics:
|
12 |
+
- type: cosine_pearson
|
13 |
+
value: 56.398777687800596
|
14 |
+
- type: cosine_spearman
|
15 |
+
value: 60.2976392017466
|
16 |
+
- type: manhattan_pearson
|
17 |
+
value: 58.34432755369896
|
18 |
+
- type: manhattan_spearman
|
19 |
+
value: 59.633715024557176
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 58.33199470250656
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 59.633393360323595
|
24 |
+
- type: main_score
|
25 |
+
value: 60.2976392017466
|
26 |
+
task:
|
27 |
+
type: STS
|
28 |
+
- dataset:
|
29 |
+
config: default
|
30 |
+
name: MTEB ATEC (default)
|
31 |
+
revision: None
|
32 |
+
split: test
|
33 |
+
type: C-MTEB/ATEC
|
34 |
+
metrics:
|
35 |
+
- type: cosine_pearson
|
36 |
+
value: 56.418711941754694
|
37 |
+
- type: cosine_spearman
|
38 |
+
value: 58.49782527525838
|
39 |
+
- type: manhattan_pearson
|
40 |
+
value: 62.05335398720773
|
41 |
+
- type: manhattan_spearman
|
42 |
+
value: 58.18176592298454
|
43 |
+
- type: euclidean_pearson
|
44 |
+
value: 62.06479799788818
|
45 |
+
- type: euclidean_spearman
|
46 |
+
value: 58.18182671971488
|
47 |
+
- type: main_score
|
48 |
+
value: 58.49782527525838
|
49 |
+
task:
|
50 |
+
type: STS
|
51 |
+
- dataset:
|
52 |
+
config: zh
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
55 |
+
split: test
|
56 |
+
type: mteb/amazon_reviews_multi
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 46.656000000000006
|
60 |
+
- type: accuracy_stderr
|
61 |
+
value: 1.1704631561907444
|
62 |
+
- type: f1
|
63 |
+
value: 45.75911645865614
|
64 |
+
- type: f1_stderr
|
65 |
+
value: 1.323301406018355
|
66 |
+
- type: main_score
|
67 |
+
value: 46.656000000000006
|
68 |
+
task:
|
69 |
+
type: Classification
|
70 |
+
- dataset:
|
71 |
+
config: zh
|
72 |
+
name: MTEB AmazonReviewsClassification (zh)
|
73 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
74 |
+
split: validation
|
75 |
+
type: mteb/amazon_reviews_multi
|
76 |
+
metrics:
|
77 |
+
- type: accuracy
|
78 |
+
value: 45.84599999999999
|
79 |
+
- type: accuracy_stderr
|
80 |
+
value: 1.0539468677310073
|
81 |
+
- type: f1
|
82 |
+
value: 45.03273670979488
|
83 |
+
- type: f1_stderr
|
84 |
+
value: 1.00417269917164
|
85 |
+
- type: main_score
|
86 |
+
value: 45.84599999999999
|
87 |
+
task:
|
88 |
+
type: Classification
|
89 |
+
- dataset:
|
90 |
+
config: default
|
91 |
+
name: MTEB BQ (default)
|
92 |
+
revision: None
|
93 |
+
split: test
|
94 |
+
type: C-MTEB/BQ
|
95 |
+
metrics:
|
96 |
+
- type: cosine_pearson
|
97 |
+
value: 71.33099160181597
|
98 |
+
- type: cosine_spearman
|
99 |
+
value: 73.06963287952199
|
100 |
+
- type: manhattan_pearson
|
101 |
+
value: 70.65314181752566
|
102 |
+
- type: manhattan_spearman
|
103 |
+
value: 72.34604440078336
|
104 |
+
- type: euclidean_pearson
|
105 |
+
value: 70.67624292501411
|
106 |
+
- type: euclidean_spearman
|
107 |
+
value: 72.3597691712343
|
108 |
+
- type: main_score
|
109 |
+
value: 73.06963287952199
|
110 |
+
task:
|
111 |
+
type: STS
|
112 |
+
- dataset:
|
113 |
+
config: default
|
114 |
+
name: MTEB CLSClusteringP2P (default)
|
115 |
+
revision: None
|
116 |
+
split: test
|
117 |
+
type: C-MTEB/CLSClusteringP2P
|
118 |
+
metrics:
|
119 |
+
- type: v_measure
|
120 |
+
value: 53.79921861868626
|
121 |
+
- type: v_measure_std
|
122 |
+
value: 2.073016548125077
|
123 |
+
- type: main_score
|
124 |
+
value: 53.79921861868626
|
125 |
+
task:
|
126 |
+
type: Clustering
|
127 |
+
- dataset:
|
128 |
+
config: default
|
129 |
+
name: MTEB CLSClusteringS2S (default)
|
130 |
+
revision: None
|
131 |
+
split: test
|
132 |
+
type: C-MTEB/CLSClusteringS2S
|
133 |
+
metrics:
|
134 |
+
- type: v_measure
|
135 |
+
value: 46.22496957569903
|
136 |
+
- type: v_measure_std
|
137 |
+
value: 1.4660184854965337
|
138 |
+
- type: main_score
|
139 |
+
value: 46.22496957569903
|
140 |
+
task:
|
141 |
+
type: Clustering
|
142 |
+
- dataset:
|
143 |
+
config: default
|
144 |
+
name: MTEB CMedQAv1-reranking (default)
|
145 |
+
revision: None
|
146 |
+
split: test
|
147 |
+
type: C-MTEB/CMedQAv1-reranking
|
148 |
+
metrics:
|
149 |
+
- type: map
|
150 |
+
value: 90.00883554654739
|
151 |
+
- type: mrr
|
152 |
+
value: 92.02547619047618
|
153 |
+
- type: main_score
|
154 |
+
value: 90.00883554654739
|
155 |
+
task:
|
156 |
+
type: Reranking
|
157 |
+
- dataset:
|
158 |
+
config: default
|
159 |
+
name: MTEB CMedQAv2-reranking (default)
|
160 |
+
revision: None
|
161 |
+
split: test
|
162 |
+
type: C-MTEB/CMedQAv2-reranking
|
163 |
+
metrics:
|
164 |
+
- type: map
|
165 |
+
value: 92.47561424216632
|
166 |
+
- type: mrr
|
167 |
+
value: 94.60039682539681
|
168 |
+
- type: main_score
|
169 |
+
value: 92.47561424216632
|
170 |
+
task:
|
171 |
+
type: Reranking
|
172 |
+
- dataset:
|
173 |
+
config: default
|
174 |
+
name: MTEB CmedqaRetrieval (default)
|
175 |
+
revision: None
|
176 |
+
split: dev
|
177 |
+
type: C-MTEB/CmedqaRetrieval
|
178 |
+
metrics:
|
179 |
+
- type: map_at_1
|
180 |
+
value: 29.935000000000002
|
181 |
+
- type: map_at_10
|
182 |
+
value: 44.143
|
183 |
+
- type: map_at_100
|
184 |
+
value: 45.999
|
185 |
+
- type: map_at_1000
|
186 |
+
value: 46.084
|
187 |
+
- type: map_at_3
|
188 |
+
value: 39.445
|
189 |
+
- type: map_at_5
|
190 |
+
value: 42.218
|
191 |
+
- type: mrr_at_1
|
192 |
+
value: 44.711
|
193 |
+
- type: mrr_at_10
|
194 |
+
value: 53.88699999999999
|
195 |
+
- type: mrr_at_100
|
196 |
+
value: 54.813
|
197 |
+
- type: mrr_at_1000
|
198 |
+
value: 54.834
|
199 |
+
- type: mrr_at_3
|
200 |
+
value: 51.1
|
201 |
+
- type: mrr_at_5
|
202 |
+
value: 52.827
|
203 |
+
- type: ndcg_at_1
|
204 |
+
value: 44.711
|
205 |
+
- type: ndcg_at_10
|
206 |
+
value: 51.471999999999994
|
207 |
+
- type: ndcg_at_100
|
208 |
+
value: 58.362
|
209 |
+
- type: ndcg_at_1000
|
210 |
+
value: 59.607
|
211 |
+
- type: ndcg_at_3
|
212 |
+
value: 45.558
|
213 |
+
- type: ndcg_at_5
|
214 |
+
value: 48.345
|
215 |
+
- type: precision_at_1
|
216 |
+
value: 44.711
|
217 |
+
- type: precision_at_10
|
218 |
+
value: 11.1
|
219 |
+
- type: precision_at_100
|
220 |
+
value: 1.6650000000000003
|
221 |
+
- type: precision_at_1000
|
222 |
+
value: 0.184
|
223 |
+
- type: precision_at_3
|
224 |
+
value: 25.306
|
225 |
+
- type: precision_at_5
|
226 |
+
value: 18.404999999999998
|
227 |
+
- type: recall_at_1
|
228 |
+
value: 29.935000000000002
|
229 |
+
- type: recall_at_10
|
230 |
+
value: 63.366
|
231 |
+
- type: recall_at_100
|
232 |
+
value: 91.375
|
233 |
+
- type: recall_at_1000
|
234 |
+
value: 99.167
|
235 |
+
- type: recall_at_3
|
236 |
+
value: 45.888
|
237 |
+
- type: recall_at_5
|
238 |
+
value: 54.169
|
239 |
+
- type: main_score
|
240 |
+
value: 51.471999999999994
|
241 |
+
task:
|
242 |
+
type: Retrieval
|
243 |
+
- dataset:
|
244 |
+
config: default
|
245 |
+
name: MTEB Cmnli (default)
|
246 |
+
revision: None
|
247 |
+
split: validation
|
248 |
+
type: C-MTEB/CMNLI
|
249 |
+
metrics:
|
250 |
+
- type: cos_sim_accuracy
|
251 |
+
value: 80.3968731208659
|
252 |
+
- type: cos_sim_accuracy_threshold
|
253 |
+
value: 86.61384582519531
|
254 |
+
- type: cos_sim_ap
|
255 |
+
value: 88.21894124132636
|
256 |
+
- type: cos_sim_f1
|
257 |
+
value: 81.67308750687947
|
258 |
+
- type: cos_sim_f1_threshold
|
259 |
+
value: 86.04017496109009
|
260 |
+
- type: cos_sim_precision
|
261 |
+
value: 77.1630615640599
|
262 |
+
- type: cos_sim_recall
|
263 |
+
value: 86.7430441898527
|
264 |
+
- type: dot_accuracy
|
265 |
+
value: 67.7931449188214
|
266 |
+
- type: dot_accuracy_threshold
|
267 |
+
value: 92027.47802734375
|
268 |
+
- type: dot_ap
|
269 |
+
value: 75.73048600318765
|
270 |
+
- type: dot_f1
|
271 |
+
value: 71.64554512914772
|
272 |
+
- type: dot_f1_threshold
|
273 |
+
value: 83535.70556640625
|
274 |
+
- type: dot_precision
|
275 |
+
value: 61.1056105610561
|
276 |
+
- type: dot_recall
|
277 |
+
value: 86.57937806873977
|
278 |
+
- type: euclidean_accuracy
|
279 |
+
value: 78.52074564040889
|
280 |
+
- type: euclidean_accuracy_threshold
|
281 |
+
value: 1688.486671447754
|
282 |
+
- type: euclidean_ap
|
283 |
+
value: 86.40643721988414
|
284 |
+
- type: euclidean_f1
|
285 |
+
value: 79.97822536744692
|
286 |
+
- type: euclidean_f1_threshold
|
287 |
+
value: 1748.1914520263672
|
288 |
+
- type: euclidean_precision
|
289 |
+
value: 74.83700081499592
|
290 |
+
- type: euclidean_recall
|
291 |
+
value: 85.87795183539865
|
292 |
+
- type: manhattan_accuracy
|
293 |
+
value: 78.59290438965725
|
294 |
+
- type: manhattan_accuracy_threshold
|
295 |
+
value: 57066.162109375
|
296 |
+
- type: manhattan_ap
|
297 |
+
value: 86.38300352696045
|
298 |
+
- type: manhattan_f1
|
299 |
+
value: 79.84587391630097
|
300 |
+
- type: manhattan_f1_threshold
|
301 |
+
value: 59686.376953125
|
302 |
+
- type: manhattan_precision
|
303 |
+
value: 73.62810896170548
|
304 |
+
- type: manhattan_recall
|
305 |
+
value: 87.21066167874679
|
306 |
+
- type: max_accuracy
|
307 |
+
value: 80.3968731208659
|
308 |
+
- type: max_ap
|
309 |
+
value: 88.21894124132636
|
310 |
+
- type: max_f1
|
311 |
+
value: 81.67308750687947
|
312 |
+
task:
|
313 |
+
type: PairClassification
|
314 |
+
- dataset:
|
315 |
+
config: default
|
316 |
+
name: MTEB CovidRetrieval (default)
|
317 |
+
revision: None
|
318 |
+
split: dev
|
319 |
+
type: C-MTEB/CovidRetrieval
|
320 |
+
metrics:
|
321 |
+
- type: map_at_1
|
322 |
+
value: 85.485
|
323 |
+
- type: map_at_10
|
324 |
+
value: 91.135
|
325 |
+
- type: map_at_100
|
326 |
+
value: 91.16199999999999
|
327 |
+
- type: map_at_1000
|
328 |
+
value: 91.16300000000001
|
329 |
+
- type: map_at_3
|
330 |
+
value: 90.499
|
331 |
+
- type: map_at_5
|
332 |
+
value: 90.91
|
333 |
+
- type: mrr_at_1
|
334 |
+
value: 85.88
|
335 |
+
- type: mrr_at_10
|
336 |
+
value: 91.133
|
337 |
+
- type: mrr_at_100
|
338 |
+
value: 91.16
|
339 |
+
- type: mrr_at_1000
|
340 |
+
value: 91.161
|
341 |
+
- type: mrr_at_3
|
342 |
+
value: 90.551
|
343 |
+
- type: mrr_at_5
|
344 |
+
value: 90.904
|
345 |
+
- type: ndcg_at_1
|
346 |
+
value: 85.88
|
347 |
+
- type: ndcg_at_10
|
348 |
+
value: 93.163
|
349 |
+
- type: ndcg_at_100
|
350 |
+
value: 93.282
|
351 |
+
- type: ndcg_at_1000
|
352 |
+
value: 93.309
|
353 |
+
- type: ndcg_at_3
|
354 |
+
value: 91.943
|
355 |
+
- type: ndcg_at_5
|
356 |
+
value: 92.637
|
357 |
+
- type: precision_at_1
|
358 |
+
value: 85.88
|
359 |
+
- type: precision_at_10
|
360 |
+
value: 10.032
|
361 |
+
- type: precision_at_100
|
362 |
+
value: 1.008
|
363 |
+
- type: precision_at_1000
|
364 |
+
value: 0.101
|
365 |
+
- type: precision_at_3
|
366 |
+
value: 32.315
|
367 |
+
- type: precision_at_5
|
368 |
+
value: 19.747
|
369 |
+
- type: recall_at_1
|
370 |
+
value: 85.485
|
371 |
+
- type: recall_at_10
|
372 |
+
value: 99.262
|
373 |
+
- type: recall_at_100
|
374 |
+
value: 99.789
|
375 |
+
- type: recall_at_1000
|
376 |
+
value: 100.0
|
377 |
+
- type: recall_at_3
|
378 |
+
value: 95.96900000000001
|
379 |
+
- type: recall_at_5
|
380 |
+
value: 97.682
|
381 |
+
- type: main_score
|
382 |
+
value: 93.163
|
383 |
+
task:
|
384 |
+
type: Retrieval
|
385 |
+
- dataset:
|
386 |
+
config: default
|
387 |
+
name: MTEB DuRetrieval (default)
|
388 |
+
revision: None
|
389 |
+
split: dev
|
390 |
+
type: C-MTEB/DuRetrieval
|
391 |
+
metrics:
|
392 |
+
- type: map_at_1
|
393 |
+
value: 27.29
|
394 |
+
- type: map_at_10
|
395 |
+
value: 82.832
|
396 |
+
- type: map_at_100
|
397 |
+
value: 85.482
|
398 |
+
- type: map_at_1000
|
399 |
+
value: 85.52
|
400 |
+
- type: map_at_3
|
401 |
+
value: 57.964000000000006
|
402 |
+
- type: map_at_5
|
403 |
+
value: 72.962
|
404 |
+
- type: mrr_at_1
|
405 |
+
value: 92.35
|
406 |
+
- type: mrr_at_10
|
407 |
+
value: 94.77499999999999
|
408 |
+
- type: mrr_at_100
|
409 |
+
value: 94.825
|
410 |
+
- type: mrr_at_1000
|
411 |
+
value: 94.827
|
412 |
+
- type: mrr_at_3
|
413 |
+
value: 94.50800000000001
|
414 |
+
- type: mrr_at_5
|
415 |
+
value: 94.688
|
416 |
+
- type: ndcg_at_1
|
417 |
+
value: 92.35
|
418 |
+
- type: ndcg_at_10
|
419 |
+
value: 89.432
|
420 |
+
- type: ndcg_at_100
|
421 |
+
value: 91.813
|
422 |
+
- type: ndcg_at_1000
|
423 |
+
value: 92.12
|
424 |
+
- type: ndcg_at_3
|
425 |
+
value: 88.804
|
426 |
+
- type: ndcg_at_5
|
427 |
+
value: 87.681
|
428 |
+
- type: precision_at_1
|
429 |
+
value: 92.35
|
430 |
+
- type: precision_at_10
|
431 |
+
value: 42.32
|
432 |
+
- type: precision_at_100
|
433 |
+
value: 4.812
|
434 |
+
- type: precision_at_1000
|
435 |
+
value: 0.48900000000000005
|
436 |
+
- type: precision_at_3
|
437 |
+
value: 79.367
|
438 |
+
- type: precision_at_5
|
439 |
+
value: 66.86999999999999
|
440 |
+
- type: recall_at_1
|
441 |
+
value: 27.29
|
442 |
+
- type: recall_at_10
|
443 |
+
value: 90.093
|
444 |
+
- type: recall_at_100
|
445 |
+
value: 97.916
|
446 |
+
- type: recall_at_1000
|
447 |
+
value: 99.40299999999999
|
448 |
+
- type: recall_at_3
|
449 |
+
value: 59.816
|
450 |
+
- type: recall_at_5
|
451 |
+
value: 76.889
|
452 |
+
- type: main_score
|
453 |
+
value: 89.432
|
454 |
+
task:
|
455 |
+
type: Retrieval
|
456 |
+
- dataset:
|
457 |
+
config: default
|
458 |
+
name: MTEB EcomRetrieval (default)
|
459 |
+
revision: None
|
460 |
+
split: dev
|
461 |
+
type: C-MTEB/EcomRetrieval
|
462 |
+
metrics:
|
463 |
+
- type: map_at_1
|
464 |
+
value: 55.2
|
465 |
+
- type: map_at_10
|
466 |
+
value: 65.767
|
467 |
+
- type: map_at_100
|
468 |
+
value: 66.208
|
469 |
+
- type: map_at_1000
|
470 |
+
value: 66.219
|
471 |
+
- type: map_at_3
|
472 |
+
value: 63.1
|
473 |
+
- type: map_at_5
|
474 |
+
value: 64.865
|
475 |
+
- type: mrr_at_1
|
476 |
+
value: 55.2
|
477 |
+
- type: mrr_at_10
|
478 |
+
value: 65.767
|
479 |
+
- type: mrr_at_100
|
480 |
+
value: 66.208
|
481 |
+
- type: mrr_at_1000
|
482 |
+
value: 66.219
|
483 |
+
- type: mrr_at_3
|
484 |
+
value: 63.1
|
485 |
+
- type: mrr_at_5
|
486 |
+
value: 64.865
|
487 |
+
- type: ndcg_at_1
|
488 |
+
value: 55.2
|
489 |
+
- type: ndcg_at_10
|
490 |
+
value: 70.875
|
491 |
+
- type: ndcg_at_100
|
492 |
+
value: 72.931
|
493 |
+
- type: ndcg_at_1000
|
494 |
+
value: 73.2
|
495 |
+
- type: ndcg_at_3
|
496 |
+
value: 65.526
|
497 |
+
- type: ndcg_at_5
|
498 |
+
value: 68.681
|
499 |
+
- type: precision_at_1
|
500 |
+
value: 55.2
|
501 |
+
- type: precision_at_10
|
502 |
+
value: 8.690000000000001
|
503 |
+
- type: precision_at_100
|
504 |
+
value: 0.963
|
505 |
+
- type: precision_at_1000
|
506 |
+
value: 0.098
|
507 |
+
- type: precision_at_3
|
508 |
+
value: 24.166999999999998
|
509 |
+
- type: precision_at_5
|
510 |
+
value: 16.02
|
511 |
+
- type: recall_at_1
|
512 |
+
value: 55.2
|
513 |
+
- type: recall_at_10
|
514 |
+
value: 86.9
|
515 |
+
- type: recall_at_100
|
516 |
+
value: 96.3
|
517 |
+
- type: recall_at_1000
|
518 |
+
value: 98.4
|
519 |
+
- type: recall_at_3
|
520 |
+
value: 72.5
|
521 |
+
- type: recall_at_5
|
522 |
+
value: 80.10000000000001
|
523 |
+
- type: main_score
|
524 |
+
value: 70.875
|
525 |
+
task:
|
526 |
+
type: Retrieval
|
527 |
+
- dataset:
|
528 |
+
config: default
|
529 |
+
name: MTEB IFlyTek (default)
|
530 |
+
revision: None
|
531 |
+
split: validation
|
532 |
+
type: C-MTEB/IFlyTek-classification
|
533 |
+
metrics:
|
534 |
+
- type: accuracy
|
535 |
+
value: 46.95652173913043
|
536 |
+
- type: accuracy_stderr
|
537 |
+
value: 0.8816372193041417
|
538 |
+
- type: f1
|
539 |
+
value: 38.870262239396496
|
540 |
+
- type: f1_stderr
|
541 |
+
value: 1.1248427890133785
|
542 |
+
- type: main_score
|
543 |
+
value: 46.95652173913043
|
544 |
+
task:
|
545 |
+
type: Classification
|
546 |
+
- dataset:
|
547 |
+
config: default
|
548 |
+
name: MTEB JDReview (default)
|
549 |
+
revision: None
|
550 |
+
split: test
|
551 |
+
type: C-MTEB/JDReview-classification
|
552 |
+
metrics:
|
553 |
+
- type: accuracy
|
554 |
+
value: 87.18574108818011
|
555 |
+
- type: accuracy_stderr
|
556 |
+
value: 1.828763099528331
|
557 |
+
- type: ap
|
558 |
+
value: 56.516251295719414
|
559 |
+
- type: ap_stderr
|
560 |
+
value: 3.3789918068717895
|
561 |
+
- type: f1
|
562 |
+
value: 82.04209146803106
|
563 |
+
- type: f1_stderr
|
564 |
+
value: 2.005027201503808
|
565 |
+
- type: main_score
|
566 |
+
value: 87.18574108818011
|
567 |
+
task:
|
568 |
+
type: Classification
|
569 |
+
- dataset:
|
570 |
+
config: default
|
571 |
+
name: MTEB LCQMC (default)
|
572 |
+
revision: None
|
573 |
+
split: test
|
574 |
+
type: C-MTEB/LCQMC
|
575 |
+
metrics:
|
576 |
+
- type: cosine_pearson
|
577 |
+
value: 72.67112275922743
|
578 |
+
- type: cosine_spearman
|
579 |
+
value: 78.44376213964316
|
580 |
+
- type: manhattan_pearson
|
581 |
+
value: 77.51766838932976
|
582 |
+
- type: manhattan_spearman
|
583 |
+
value: 78.02885255071602
|
584 |
+
- type: euclidean_pearson
|
585 |
+
value: 77.5292348074114
|
586 |
+
- type: euclidean_spearman
|
587 |
+
value: 78.04277103380235
|
588 |
+
- type: main_score
|
589 |
+
value: 78.44376213964316
|
590 |
+
task:
|
591 |
+
type: STS
|
592 |
+
- dataset:
|
593 |
+
config: default
|
594 |
+
name: MTEB MMarcoReranking (default)
|
595 |
+
revision: None
|
596 |
+
split: dev
|
597 |
+
type: C-MTEB/Mmarco-reranking
|
598 |
+
metrics:
|
599 |
+
- type: map
|
600 |
+
value: 37.021133625346174
|
601 |
+
- type: mrr
|
602 |
+
value: 35.81428571428572
|
603 |
+
- type: main_score
|
604 |
+
value: 37.021133625346174
|
605 |
+
task:
|
606 |
+
type: Reranking
|
607 |
+
- dataset:
|
608 |
+
config: default
|
609 |
+
name: MTEB MMarcoRetrieval (default)
|
610 |
+
revision: None
|
611 |
+
split: dev
|
612 |
+
type: C-MTEB/MMarcoRetrieval
|
613 |
+
metrics:
|
614 |
+
- type: map_at_1
|
615 |
+
value: 69.624
|
616 |
+
- type: map_at_10
|
617 |
+
value: 78.764
|
618 |
+
- type: map_at_100
|
619 |
+
value: 79.038
|
620 |
+
- type: map_at_1000
|
621 |
+
value: 79.042
|
622 |
+
- type: map_at_3
|
623 |
+
value: 76.846
|
624 |
+
- type: map_at_5
|
625 |
+
value: 78.106
|
626 |
+
- type: mrr_at_1
|
627 |
+
value: 71.905
|
628 |
+
- type: mrr_at_10
|
629 |
+
value: 79.268
|
630 |
+
- type: mrr_at_100
|
631 |
+
value: 79.508
|
632 |
+
- type: mrr_at_1000
|
633 |
+
value: 79.512
|
634 |
+
- type: mrr_at_3
|
635 |
+
value: 77.60000000000001
|
636 |
+
- type: mrr_at_5
|
637 |
+
value: 78.701
|
638 |
+
- type: ndcg_at_1
|
639 |
+
value: 71.905
|
640 |
+
- type: ndcg_at_10
|
641 |
+
value: 82.414
|
642 |
+
- type: ndcg_at_100
|
643 |
+
value: 83.59
|
644 |
+
- type: ndcg_at_1000
|
645 |
+
value: 83.708
|
646 |
+
- type: ndcg_at_3
|
647 |
+
value: 78.803
|
648 |
+
- type: ndcg_at_5
|
649 |
+
value: 80.94
|
650 |
+
- type: precision_at_1
|
651 |
+
value: 71.905
|
652 |
+
- type: precision_at_10
|
653 |
+
value: 9.901
|
654 |
+
- type: precision_at_100
|
655 |
+
value: 1.048
|
656 |
+
- type: precision_at_1000
|
657 |
+
value: 0.106
|
658 |
+
- type: precision_at_3
|
659 |
+
value: 29.479
|
660 |
+
- type: precision_at_5
|
661 |
+
value: 18.828
|
662 |
+
- type: recall_at_1
|
663 |
+
value: 69.624
|
664 |
+
- type: recall_at_10
|
665 |
+
value: 93.149
|
666 |
+
- type: recall_at_100
|
667 |
+
value: 98.367
|
668 |
+
- type: recall_at_1000
|
669 |
+
value: 99.29299999999999
|
670 |
+
- type: recall_at_3
|
671 |
+
value: 83.67599999999999
|
672 |
+
- type: recall_at_5
|
673 |
+
value: 88.752
|
674 |
+
- type: main_score
|
675 |
+
value: 82.414
|
676 |
+
task:
|
677 |
+
type: Retrieval
|
678 |
+
- dataset:
|
679 |
+
config: zh-CN
|
680 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
681 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
682 |
+
split: test
|
683 |
+
type: mteb/amazon_massive_intent
|
684 |
+
metrics:
|
685 |
+
- type: accuracy
|
686 |
+
value: 77.36045729657029
|
687 |
+
- type: accuracy_stderr
|
688 |
+
value: 0.8944498935111289
|
689 |
+
- type: f1
|
690 |
+
value: 73.73485209304225
|
691 |
+
- type: f1_stderr
|
692 |
+
value: 0.8615191738484445
|
693 |
+
- type: main_score
|
694 |
+
value: 77.36045729657029
|
695 |
+
task:
|
696 |
+
type: Classification
|
697 |
+
- dataset:
|
698 |
+
config: zh-CN
|
699 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
700 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
701 |
+
split: validation
|
702 |
+
type: mteb/amazon_massive_intent
|
703 |
+
metrics:
|
704 |
+
- type: accuracy
|
705 |
+
value: 78.16035415641909
|
706 |
+
- type: accuracy_stderr
|
707 |
+
value: 0.7514724220154535
|
708 |
+
- type: f1
|
709 |
+
value: 75.32402452596266
|
710 |
+
- type: f1_stderr
|
711 |
+
value: 0.5969737694527888
|
712 |
+
- type: main_score
|
713 |
+
value: 78.16035415641909
|
714 |
+
task:
|
715 |
+
type: Classification
|
716 |
+
- dataset:
|
717 |
+
config: zh-CN
|
718 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
719 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
720 |
+
split: test
|
721 |
+
type: mteb/amazon_massive_scenario
|
722 |
+
metrics:
|
723 |
+
- type: accuracy
|
724 |
+
value: 83.31203765971755
|
725 |
+
- type: accuracy_stderr
|
726 |
+
value: 1.1063564012537301
|
727 |
+
- type: f1
|
728 |
+
value: 82.81655735858999
|
729 |
+
- type: f1_stderr
|
730 |
+
value: 0.9643568609098954
|
731 |
+
- type: main_score
|
732 |
+
value: 83.31203765971755
|
733 |
+
task:
|
734 |
+
type: Classification
|
735 |
+
- dataset:
|
736 |
+
config: zh-CN
|
737 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
738 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
739 |
+
split: validation
|
740 |
+
type: mteb/amazon_massive_scenario
|
741 |
+
metrics:
|
742 |
+
- type: accuracy
|
743 |
+
value: 83.11362518445647
|
744 |
+
- type: accuracy_stderr
|
745 |
+
value: 1.252141689154366
|
746 |
+
- type: f1
|
747 |
+
value: 82.56555569957769
|
748 |
+
- type: f1_stderr
|
749 |
+
value: 0.858322314243248
|
750 |
+
- type: main_score
|
751 |
+
value: 83.11362518445647
|
752 |
+
task:
|
753 |
+
type: Classification
|
754 |
+
- dataset:
|
755 |
+
config: default
|
756 |
+
name: MTEB MedicalRetrieval (default)
|
757 |
+
revision: None
|
758 |
+
split: dev
|
759 |
+
type: C-MTEB/MedicalRetrieval
|
760 |
+
metrics:
|
761 |
+
- type: map_at_1
|
762 |
+
value: 63.1
|
763 |
+
- type: map_at_10
|
764 |
+
value: 70.816
|
765 |
+
- type: map_at_100
|
766 |
+
value: 71.368
|
767 |
+
- type: map_at_1000
|
768 |
+
value: 71.379
|
769 |
+
- type: map_at_3
|
770 |
+
value: 69.033
|
771 |
+
- type: map_at_5
|
772 |
+
value: 70.028
|
773 |
+
- type: mrr_at_1
|
774 |
+
value: 63.4
|
775 |
+
- type: mrr_at_10
|
776 |
+
value: 70.98400000000001
|
777 |
+
- type: mrr_at_100
|
778 |
+
value: 71.538
|
779 |
+
- type: mrr_at_1000
|
780 |
+
value: 71.548
|
781 |
+
- type: mrr_at_3
|
782 |
+
value: 69.19999999999999
|
783 |
+
- type: mrr_at_5
|
784 |
+
value: 70.195
|
785 |
+
- type: ndcg_at_1
|
786 |
+
value: 63.1
|
787 |
+
- type: ndcg_at_10
|
788 |
+
value: 74.665
|
789 |
+
- type: ndcg_at_100
|
790 |
+
value: 77.16199999999999
|
791 |
+
- type: ndcg_at_1000
|
792 |
+
value: 77.408
|
793 |
+
- type: ndcg_at_3
|
794 |
+
value: 70.952
|
795 |
+
- type: ndcg_at_5
|
796 |
+
value: 72.776
|
797 |
+
- type: precision_at_1
|
798 |
+
value: 63.1
|
799 |
+
- type: precision_at_10
|
800 |
+
value: 8.68
|
801 |
+
- type: precision_at_100
|
802 |
+
value: 0.9809999999999999
|
803 |
+
- type: precision_at_1000
|
804 |
+
value: 0.1
|
805 |
+
- type: precision_at_3
|
806 |
+
value: 25.5
|
807 |
+
- type: precision_at_5
|
808 |
+
value: 16.2
|
809 |
+
- type: recall_at_1
|
810 |
+
value: 63.1
|
811 |
+
- type: recall_at_10
|
812 |
+
value: 86.8
|
813 |
+
- type: recall_at_100
|
814 |
+
value: 98.1
|
815 |
+
- type: recall_at_1000
|
816 |
+
value: 100.0
|
817 |
+
- type: recall_at_3
|
818 |
+
value: 76.5
|
819 |
+
- type: recall_at_5
|
820 |
+
value: 81.0
|
821 |
+
- type: main_score
|
822 |
+
value: 74.665
|
823 |
+
task:
|
824 |
+
type: Retrieval
|
825 |
+
- dataset:
|
826 |
+
config: default
|
827 |
+
name: MTEB MultilingualSentiment (default)
|
828 |
+
revision: None
|
829 |
+
split: validation
|
830 |
+
type: C-MTEB/MultilingualSentiment-classification
|
831 |
+
metrics:
|
832 |
+
- type: accuracy
|
833 |
+
value: 75.98
|
834 |
+
- type: accuracy_stderr
|
835 |
+
value: 0.8634813257969153
|
836 |
+
- type: f1
|
837 |
+
value: 75.98312901227456
|
838 |
+
- type: f1_stderr
|
839 |
+
value: 0.9813231777702479
|
840 |
+
- type: main_score
|
841 |
+
value: 75.98
|
842 |
+
task:
|
843 |
+
type: Classification
|
844 |
+
- dataset:
|
845 |
+
config: default
|
846 |
+
name: MTEB Ocnli (default)
|
847 |
+
revision: None
|
848 |
+
split: validation
|
849 |
+
type: C-MTEB/OCNLI
|
850 |
+
metrics:
|
851 |
+
- type: cos_sim_accuracy
|
852 |
+
value: 80.02165674066053
|
853 |
+
- type: cos_sim_accuracy_threshold
|
854 |
+
value: 84.70024466514587
|
855 |
+
- type: cos_sim_ap
|
856 |
+
value: 84.5948682253982
|
857 |
+
- type: cos_sim_f1
|
858 |
+
value: 80.84291187739463
|
859 |
+
- type: cos_sim_f1_threshold
|
860 |
+
value: 82.62853622436523
|
861 |
+
- type: cos_sim_precision
|
862 |
+
value: 73.97020157756354
|
863 |
+
- type: cos_sim_recall
|
864 |
+
value: 89.1235480464625
|
865 |
+
- type: dot_accuracy
|
866 |
+
value: 71.52138603140227
|
867 |
+
- type: dot_accuracy_threshold
|
868 |
+
value: 84206.94580078125
|
869 |
+
- type: dot_ap
|
870 |
+
value: 77.69986172282461
|
871 |
+
- type: dot_f1
|
872 |
+
value: 74.76467951591216
|
873 |
+
- type: dot_f1_threshold
|
874 |
+
value: 78842.08984375
|
875 |
+
- type: dot_precision
|
876 |
+
value: 64.95327102803739
|
877 |
+
- type: dot_recall
|
878 |
+
value: 88.0675818373812
|
879 |
+
- type: euclidean_accuracy
|
880 |
+
value: 76.01515971846237
|
881 |
+
- type: euclidean_accuracy_threshold
|
882 |
+
value: 1818.9674377441406
|
883 |
+
- type: euclidean_ap
|
884 |
+
value: 80.84369691331835
|
885 |
+
- type: euclidean_f1
|
886 |
+
value: 78.08988764044943
|
887 |
+
- type: euclidean_f1_threshold
|
888 |
+
value: 1922.1363067626953
|
889 |
+
- type: euclidean_precision
|
890 |
+
value: 70.14297729184187
|
891 |
+
- type: euclidean_recall
|
892 |
+
value: 88.0675818373812
|
893 |
+
- type: manhattan_accuracy
|
894 |
+
value: 76.12344342176502
|
895 |
+
- type: manhattan_accuracy_threshold
|
896 |
+
value: 61934.478759765625
|
897 |
+
- type: manhattan_ap
|
898 |
+
value: 80.8051823205177
|
899 |
+
- type: manhattan_f1
|
900 |
+
value: 78.21596244131456
|
901 |
+
- type: manhattan_f1_threshold
|
902 |
+
value: 64840.447998046875
|
903 |
+
- type: manhattan_precision
|
904 |
+
value: 70.41420118343196
|
905 |
+
- type: manhattan_recall
|
906 |
+
value: 87.96198521647307
|
907 |
+
- type: max_accuracy
|
908 |
+
value: 80.02165674066053
|
909 |
+
- type: max_ap
|
910 |
+
value: 84.5948682253982
|
911 |
+
- type: max_f1
|
912 |
+
value: 80.84291187739463
|
913 |
+
task:
|
914 |
+
type: PairClassification
|
915 |
+
- dataset:
|
916 |
+
config: default
|
917 |
+
name: MTEB OnlineShopping (default)
|
918 |
+
revision: None
|
919 |
+
split: test
|
920 |
+
type: C-MTEB/OnlineShopping-classification
|
921 |
+
metrics:
|
922 |
+
- type: accuracy
|
923 |
+
value: 93.63
|
924 |
+
- type: accuracy_stderr
|
925 |
+
value: 0.7253275122315392
|
926 |
+
- type: ap
|
927 |
+
value: 91.66092551327398
|
928 |
+
- type: ap_stderr
|
929 |
+
value: 0.9661774073521741
|
930 |
+
- type: f1
|
931 |
+
value: 93.61696896914624
|
932 |
+
- type: f1_stderr
|
933 |
+
value: 0.7232416235078093
|
934 |
+
- type: main_score
|
935 |
+
value: 93.63
|
936 |
+
task:
|
937 |
+
type: Classification
|
938 |
+
- dataset:
|
939 |
+
config: default
|
940 |
+
name: MTEB PAWSX (default)
|
941 |
+
revision: None
|
942 |
+
split: test
|
943 |
+
type: C-MTEB/PAWSX
|
944 |
+
metrics:
|
945 |
+
- type: cosine_pearson
|
946 |
+
value: 27.420084312732477
|
947 |
+
- type: cosine_spearman
|
948 |
+
value: 36.615019324915316
|
949 |
+
- type: manhattan_pearson
|
950 |
+
value: 35.38814491527626
|
951 |
+
- type: manhattan_spearman
|
952 |
+
value: 35.989020517540105
|
953 |
+
- type: euclidean_pearson
|
954 |
+
value: 35.322828019800475
|
955 |
+
- type: euclidean_spearman
|
956 |
+
value: 35.93118948093057
|
957 |
+
- type: main_score
|
958 |
+
value: 36.615019324915316
|
959 |
+
task:
|
960 |
+
type: STS
|
961 |
+
- dataset:
|
962 |
+
config: default
|
963 |
+
name: MTEB QBQTC (default)
|
964 |
+
revision: None
|
965 |
+
split: test
|
966 |
+
type: C-MTEB/QBQTC
|
967 |
+
metrics:
|
968 |
+
- type: cosine_pearson
|
969 |
+
value: 36.51779732355864
|
970 |
+
- type: cosine_spearman
|
971 |
+
value: 38.35615142712016
|
972 |
+
- type: manhattan_pearson
|
973 |
+
value: 31.00096996824444
|
974 |
+
- type: manhattan_spearman
|
975 |
+
value: 35.22782463612116
|
976 |
+
- type: euclidean_pearson
|
977 |
+
value: 31.04604995563808
|
978 |
+
- type: euclidean_spearman
|
979 |
+
value: 35.271420992011485
|
980 |
+
- type: main_score
|
981 |
+
value: 38.35615142712016
|
982 |
+
task:
|
983 |
+
type: STS
|
984 |
+
- dataset:
|
985 |
+
config: zh
|
986 |
+
name: MTEB STS22 (zh)
|
987 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
988 |
+
split: test
|
989 |
+
type: mteb/sts22-crosslingual-sts
|
990 |
+
metrics:
|
991 |
+
- type: cosine_pearson
|
992 |
+
value: 60.76376961662733
|
993 |
+
- type: cosine_spearman
|
994 |
+
value: 65.93112312064913
|
995 |
+
- type: manhattan_pearson
|
996 |
+
value: 60.18998639945854
|
997 |
+
- type: manhattan_spearman
|
998 |
+
value: 64.37697612695015
|
999 |
+
- type: euclidean_pearson
|
1000 |
+
value: 60.287759656277814
|
1001 |
+
- type: euclidean_spearman
|
1002 |
+
value: 64.37685757691955
|
1003 |
+
- type: main_score
|
1004 |
+
value: 65.93112312064913
|
1005 |
+
task:
|
1006 |
+
type: STS
|
1007 |
+
- dataset:
|
1008 |
+
config: default
|
1009 |
+
name: MTEB STSB (default)
|
1010 |
+
revision: None
|
1011 |
+
split: test
|
1012 |
+
type: C-MTEB/STSB
|
1013 |
+
metrics:
|
1014 |
+
- type: cosine_pearson
|
1015 |
+
value: 79.6320389543562
|
1016 |
+
- type: cosine_spearman
|
1017 |
+
value: 81.9230633773663
|
1018 |
+
- type: manhattan_pearson
|
1019 |
+
value: 80.20746913195181
|
1020 |
+
- type: manhattan_spearman
|
1021 |
+
value: 80.43150657863002
|
1022 |
+
- type: euclidean_pearson
|
1023 |
+
value: 80.1796408157508
|
1024 |
+
- type: euclidean_spearman
|
1025 |
+
value: 80.42930201788549
|
1026 |
+
- type: main_score
|
1027 |
+
value: 81.9230633773663
|
1028 |
+
task:
|
1029 |
+
type: STS
|
1030 |
+
- dataset:
|
1031 |
+
config: default
|
1032 |
+
name: MTEB T2Reranking (default)
|
1033 |
+
revision: None
|
1034 |
+
split: dev
|
1035 |
+
type: C-MTEB/T2Reranking
|
1036 |
+
metrics:
|
1037 |
+
- type: map
|
1038 |
+
value: 66.67836204644267
|
1039 |
+
- type: mrr
|
1040 |
+
value: 76.1707222383424
|
1041 |
+
- type: main_score
|
1042 |
+
value: 66.67836204644267
|
1043 |
+
task:
|
1044 |
+
type: Reranking
|
1045 |
+
- dataset:
|
1046 |
+
config: default
|
1047 |
+
name: MTEB T2Retrieval (default)
|
1048 |
+
revision: None
|
1049 |
+
split: dev
|
1050 |
+
type: C-MTEB/T2Retrieval
|
1051 |
+
metrics:
|
1052 |
+
- type: map_at_1
|
1053 |
+
value: 28.015
|
1054 |
+
- type: map_at_10
|
1055 |
+
value: 78.281
|
1056 |
+
- type: map_at_100
|
1057 |
+
value: 81.89699999999999
|
1058 |
+
- type: map_at_1000
|
1059 |
+
value: 81.95599999999999
|
1060 |
+
- type: map_at_3
|
1061 |
+
value: 55.117000000000004
|
1062 |
+
- type: map_at_5
|
1063 |
+
value: 67.647
|
1064 |
+
- type: mrr_at_1
|
1065 |
+
value: 90.496
|
1066 |
+
- type: mrr_at_10
|
1067 |
+
value: 93.132
|
1068 |
+
- type: mrr_at_100
|
1069 |
+
value: 93.207
|
1070 |
+
- type: mrr_at_1000
|
1071 |
+
value: 93.209
|
1072 |
+
- type: mrr_at_3
|
1073 |
+
value: 92.714
|
1074 |
+
- type: mrr_at_5
|
1075 |
+
value: 93.0
|
1076 |
+
- type: ndcg_at_1
|
1077 |
+
value: 90.496
|
1078 |
+
- type: ndcg_at_10
|
1079 |
+
value: 85.71600000000001
|
1080 |
+
- type: ndcg_at_100
|
1081 |
+
value: 89.164
|
1082 |
+
- type: ndcg_at_1000
|
1083 |
+
value: 89.71000000000001
|
1084 |
+
- type: ndcg_at_3
|
1085 |
+
value: 86.876
|
1086 |
+
- type: ndcg_at_5
|
1087 |
+
value: 85.607
|
1088 |
+
- type: precision_at_1
|
1089 |
+
value: 90.496
|
1090 |
+
- type: precision_at_10
|
1091 |
+
value: 42.398
|
1092 |
+
- type: precision_at_100
|
1093 |
+
value: 5.031
|
1094 |
+
- type: precision_at_1000
|
1095 |
+
value: 0.516
|
1096 |
+
- type: precision_at_3
|
1097 |
+
value: 75.729
|
1098 |
+
- type: precision_at_5
|
1099 |
+
value: 63.522
|
1100 |
+
- type: recall_at_1
|
1101 |
+
value: 28.015
|
1102 |
+
- type: recall_at_10
|
1103 |
+
value: 84.83000000000001
|
1104 |
+
- type: recall_at_100
|
1105 |
+
value: 95.964
|
1106 |
+
- type: recall_at_1000
|
1107 |
+
value: 98.67399999999999
|
1108 |
+
- type: recall_at_3
|
1109 |
+
value: 56.898
|
1110 |
+
- type: recall_at_5
|
1111 |
+
value: 71.163
|
1112 |
+
- type: main_score
|
1113 |
+
value: 85.71600000000001
|
1114 |
+
task:
|
1115 |
+
type: Retrieval
|
1116 |
+
- dataset:
|
1117 |
+
config: default
|
1118 |
+
name: MTEB TNews (default)
|
1119 |
+
revision: None
|
1120 |
+
split: validation
|
1121 |
+
type: C-MTEB/TNews-classification
|
1122 |
+
metrics:
|
1123 |
+
- type: accuracy
|
1124 |
+
value: 51.702999999999996
|
1125 |
+
- type: accuracy_stderr
|
1126 |
+
value: 0.8183526134863877
|
1127 |
+
- type: f1
|
1128 |
+
value: 50.35330734766769
|
1129 |
+
- type: f1_stderr
|
1130 |
+
value: 0.740275098366631
|
1131 |
+
- type: main_score
|
1132 |
+
value: 51.702999999999996
|
1133 |
+
task:
|
1134 |
+
type: Classification
|
1135 |
+
- dataset:
|
1136 |
+
config: default
|
1137 |
+
name: MTEB ThuNewsClusteringP2P (default)
|
1138 |
+
revision: None
|
1139 |
+
split: test
|
1140 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
1141 |
+
metrics:
|
1142 |
+
- type: v_measure
|
1143 |
+
value: 72.78709391223538
|
1144 |
+
- type: v_measure_std
|
1145 |
+
value: 1.5927130767880417
|
1146 |
+
- type: main_score
|
1147 |
+
value: 72.78709391223538
|
1148 |
+
task:
|
1149 |
+
type: Clustering
|
1150 |
+
- dataset:
|
1151 |
+
config: default
|
1152 |
+
name: MTEB ThuNewsClusteringS2S (default)
|
1153 |
+
revision: None
|
1154 |
+
split: test
|
1155 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
1156 |
+
metrics:
|
1157 |
+
- type: v_measure
|
1158 |
+
value: 66.80392174700211
|
1159 |
+
- type: v_measure_std
|
1160 |
+
value: 1.845756306548485
|
1161 |
+
- type: main_score
|
1162 |
+
value: 66.80392174700211
|
1163 |
+
task:
|
1164 |
+
type: Clustering
|
1165 |
+
- dataset:
|
1166 |
+
config: default
|
1167 |
+
name: MTEB VideoRetrieval (default)
|
1168 |
+
revision: None
|
1169 |
+
split: dev
|
1170 |
+
type: C-MTEB/VideoRetrieval
|
1171 |
+
metrics:
|
1172 |
+
- type: map_at_1
|
1173 |
+
value: 65.5
|
1174 |
+
- type: map_at_10
|
1175 |
+
value: 75.38
|
1176 |
+
- type: map_at_100
|
1177 |
+
value: 75.756
|
1178 |
+
- type: map_at_1000
|
1179 |
+
value: 75.75800000000001
|
1180 |
+
- type: map_at_3
|
1181 |
+
value: 73.8
|
1182 |
+
- type: map_at_5
|
1183 |
+
value: 74.895
|
1184 |
+
- type: mrr_at_1
|
1185 |
+
value: 65.5
|
1186 |
+
- type: mrr_at_10
|
1187 |
+
value: 75.38
|
1188 |
+
- type: mrr_at_100
|
1189 |
+
value: 75.756
|
1190 |
+
- type: mrr_at_1000
|
1191 |
+
value: 75.75800000000001
|
1192 |
+
- type: mrr_at_3
|
1193 |
+
value: 73.8
|
1194 |
+
- type: mrr_at_5
|
1195 |
+
value: 74.895
|
1196 |
+
- type: ndcg_at_1
|
1197 |
+
value: 65.5
|
1198 |
+
- type: ndcg_at_10
|
1199 |
+
value: 79.572
|
1200 |
+
- type: ndcg_at_100
|
1201 |
+
value: 81.17699999999999
|
1202 |
+
- type: ndcg_at_1000
|
1203 |
+
value: 81.227
|
1204 |
+
- type: ndcg_at_3
|
1205 |
+
value: 76.44999999999999
|
1206 |
+
- type: ndcg_at_5
|
1207 |
+
value: 78.404
|
1208 |
+
- type: precision_at_1
|
1209 |
+
value: 65.5
|
1210 |
+
- type: precision_at_10
|
1211 |
+
value: 9.24
|
1212 |
+
- type: precision_at_100
|
1213 |
+
value: 0.9939999999999999
|
1214 |
+
- type: precision_at_1000
|
1215 |
+
value: 0.1
|
1216 |
+
- type: precision_at_3
|
1217 |
+
value: 28.033
|
1218 |
+
- type: precision_at_5
|
1219 |
+
value: 17.76
|
1220 |
+
- type: recall_at_1
|
1221 |
+
value: 65.5
|
1222 |
+
- type: recall_at_10
|
1223 |
+
value: 92.4
|
1224 |
+
- type: recall_at_100
|
1225 |
+
value: 99.4
|
1226 |
+
- type: recall_at_1000
|
1227 |
+
value: 99.8
|
1228 |
+
- type: recall_at_3
|
1229 |
+
value: 84.1
|
1230 |
+
- type: recall_at_5
|
1231 |
+
value: 88.8
|
1232 |
+
- type: main_score
|
1233 |
+
value: 79.572
|
1234 |
+
task:
|
1235 |
+
type: Retrieval
|
1236 |
+
- dataset:
|
1237 |
+
config: default
|
1238 |
+
name: MTEB Waimai (default)
|
1239 |
+
revision: None
|
1240 |
+
split: test
|
1241 |
+
type: C-MTEB/waimai-classification
|
1242 |
+
metrics:
|
1243 |
+
- type: accuracy
|
1244 |
+
value: 88.70000000000002
|
1245 |
+
- type: accuracy_stderr
|
1246 |
+
value: 1.1713240371477067
|
1247 |
+
- type: ap
|
1248 |
+
value: 73.95357766936226
|
1249 |
+
- type: ap_stderr
|
1250 |
+
value: 2.3258932220157638
|
1251 |
+
- type: f1
|
1252 |
+
value: 87.27541455081986
|
1253 |
+
- type: f1_stderr
|
1254 |
+
value: 1.185968184225313
|
1255 |
+
- type: main_score
|
1256 |
+
value: 88.70000000000002
|
1257 |
+
task:
|
1258 |
+
type: Classification
|
1259 |
+
tags:
|
1260 |
+
- mteb
|
1261 |
+
---
|